Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System

IF 5.2 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Industrial Electronics Society Pub Date : 2024-11-18 DOI:10.1109/OJIES.2024.3501078
Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub
{"title":"Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System","authors":"Muhammad F. Umar;Amirhosein Gohari Nazari;Mohammad B. Shadmand;Haitham Abu-Rub","doi":"10.1109/OJIES.2024.3501078","DOIUrl":null,"url":null,"abstract":"The future power grid is transitioning toward a low inertia power system due to the displacement of synchronous generators (SG)-based generation sources and incorporating inverters-based renewable energy resources. Heterogeneous grid-forming inverters (GFMIs) are expected to be dominant sources in the power generation mix due to several benefits that are inherited in this inverter control. However, these GFMIs impose different transients on the power grid that did not exist in the conventional power grid. The effect of this heterogeneity on the dynamic behavior of such power grid with a fleet of GFMIs becomes more significant under large-scale disturbances such as short circuit faults. Particularly, because of the noncoherent and heterogeneous dynamic behavior of GFMIs in the presence of the conventional overcurrent protection schemes posing several challenges to the resiliency of a power grid during a fault and in a postfault state. To improve the resiliency of the power grid with heterogeneous GFMIs during these conditions, a coherency enforcement scheme among heterogeneous GFMI is proposed. This ensures a coherent transition of GFMIs from the normal to fault-ride-through mode and from the fault-ride-through mode to normal condition when the fault is cleared. Moreover, the proposed improvements in GFMI control prevent the excessive change/acceleration in the voltage angle of GFMIs that prevents the loss of synchronism, improves the dynamic behavior of GFMIs, and ensure seamless operation under large-scale disturbances, resulting in enhancing resiliency of power grid. These claims in the resiliency enhancements for a power grid dominated with heterogeneous GFMIs under large-scale disturbances are validated via hardware-in-the-loop experimental case studies.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"5 ","pages":"1286-1299"},"PeriodicalIF":5.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10755083","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10755083/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The future power grid is transitioning toward a low inertia power system due to the displacement of synchronous generators (SG)-based generation sources and incorporating inverters-based renewable energy resources. Heterogeneous grid-forming inverters (GFMIs) are expected to be dominant sources in the power generation mix due to several benefits that are inherited in this inverter control. However, these GFMIs impose different transients on the power grid that did not exist in the conventional power grid. The effect of this heterogeneity on the dynamic behavior of such power grid with a fleet of GFMIs becomes more significant under large-scale disturbances such as short circuit faults. Particularly, because of the noncoherent and heterogeneous dynamic behavior of GFMIs in the presence of the conventional overcurrent protection schemes posing several challenges to the resiliency of a power grid during a fault and in a postfault state. To improve the resiliency of the power grid with heterogeneous GFMIs during these conditions, a coherency enforcement scheme among heterogeneous GFMI is proposed. This ensures a coherent transition of GFMIs from the normal to fault-ride-through mode and from the fault-ride-through mode to normal condition when the fault is cleared. Moreover, the proposed improvements in GFMI control prevent the excessive change/acceleration in the voltage angle of GFMIs that prevents the loss of synchronism, improves the dynamic behavior of GFMIs, and ensure seamless operation under large-scale disturbances, resulting in enhancing resiliency of power grid. These claims in the resiliency enhancements for a power grid dominated with heterogeneous GFMIs under large-scale disturbances are validated via hardware-in-the-loop experimental case studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Open Journal of the Industrial Electronics Society
IEEE Open Journal of the Industrial Electronics Society ENGINEERING, ELECTRICAL & ELECTRONIC-
CiteScore
10.80
自引率
2.40%
发文量
33
审稿时长
12 weeks
期刊介绍: The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments. Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.
期刊最新文献
Enhanced SVPWM Techniques for Six-Phase Inverters: Mitigation of Current Harmonics and Common Mode Voltage A Fast MPPT Method Based on Improved Water Cycle Optimization Algorithm for Photovoltaic Systems Under Partial Shading Conditions and Load Variations Review of Design Freedom Offered by Additive Manufacturing for Performance Enhancement of Electrical Machine Resilient Operation of Grid-Forming Inverters Under Large-Scale Disturbances in Low Inertia Power System Graph-Attention Diffusion for Enhanced Multivariate Time-Series Anomaly Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1