{"title":"Strategic Placement of Grid-Forming Inverters Considering Spatiotemporal Dynamics and Composite Stability Index","authors":"Chalitha Liyanage;Lasantha Meegahapola;Inam Nutkani;Mahdi Jalili","doi":"10.1109/OJIES.2025.3538480","DOIUrl":null,"url":null,"abstract":"The strategic deployment of grid-forming inverters (GFMIs) is imperative to fully leverage their potential to stabilise the grid. Otherwise, poorly planned spatial allocation of GFMIs could threaten the overall system stability under network disturbances. There is an urgent need to develop a robust and multidimensional framework for GFMI placement and evaluation, considering various stability and spatiotemporal aspects of modern power systems. This article addresses this need by introducing a new GFMI placement framework considering spatiotemporal aspects of converter-interfaced renewables and a newly proposed GFMI placement index. The practical range of spatiotemporal aspects with a high probability of occurrence is captured by a reduced number of scenarios derived from a novel hybrid scenario reduction algorithm. Furthermore, the proposed composite GFMI placement index encapsulates distinct aspects of network stability, precisely, frequency and voltage stiffness/stability represented by the frequency deviation index (FDI) and the damping ratio index (DRI), respectively. The performance of the proposed GFMI placement strategy is validated through dynamic simulations by deploying GFMIs at strategic locations in a modified IEEE-39 bus network with converter-interfaced wind generators. The dynamic simulation results revealed that the proposed GFMI ranking system effectively identifies the best GFMI positions in contrast to relying solely on FDI or DRI and, thereby, can assist in preserving the stability of modern power systems with high RE penetration levels.","PeriodicalId":52675,"journal":{"name":"IEEE Open Journal of the Industrial Electronics Society","volume":"6 ","pages":"290-308"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10872818","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Industrial Electronics Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10872818/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The strategic deployment of grid-forming inverters (GFMIs) is imperative to fully leverage their potential to stabilise the grid. Otherwise, poorly planned spatial allocation of GFMIs could threaten the overall system stability under network disturbances. There is an urgent need to develop a robust and multidimensional framework for GFMI placement and evaluation, considering various stability and spatiotemporal aspects of modern power systems. This article addresses this need by introducing a new GFMI placement framework considering spatiotemporal aspects of converter-interfaced renewables and a newly proposed GFMI placement index. The practical range of spatiotemporal aspects with a high probability of occurrence is captured by a reduced number of scenarios derived from a novel hybrid scenario reduction algorithm. Furthermore, the proposed composite GFMI placement index encapsulates distinct aspects of network stability, precisely, frequency and voltage stiffness/stability represented by the frequency deviation index (FDI) and the damping ratio index (DRI), respectively. The performance of the proposed GFMI placement strategy is validated through dynamic simulations by deploying GFMIs at strategic locations in a modified IEEE-39 bus network with converter-interfaced wind generators. The dynamic simulation results revealed that the proposed GFMI ranking system effectively identifies the best GFMI positions in contrast to relying solely on FDI or DRI and, thereby, can assist in preserving the stability of modern power systems with high RE penetration levels.
期刊介绍:
The IEEE Open Journal of the Industrial Electronics Society is dedicated to advancing information-intensive, knowledge-based automation, and digitalization, aiming to enhance various industrial and infrastructural ecosystems including energy, mobility, health, and home/building infrastructure. Encompassing a range of techniques leveraging data and information acquisition, analysis, manipulation, and distribution, the journal strives to achieve greater flexibility, efficiency, effectiveness, reliability, and security within digitalized and networked environments.
Our scope provides a platform for discourse and dissemination of the latest developments in numerous research and innovation areas. These include electrical components and systems, smart grids, industrial cyber-physical systems, motion control, robotics and mechatronics, sensors and actuators, factory and building communication and automation, industrial digitalization, flexible and reconfigurable manufacturing, assistant systems, industrial applications of artificial intelligence and data science, as well as the implementation of machine learning, artificial neural networks, and fuzzy logic. Additionally, we explore human factors in digitalized and networked ecosystems. Join us in exploring and shaping the future of industrial electronics and digitalization.