X-TIME: Accelerating Large Tree Ensembles Inference for Tabular Data With Analog CAMs

IF 2 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Journal on Exploratory Solid-State Computational Devices and Circuits Pub Date : 2024-11-14 DOI:10.1109/JXCDC.2024.3495634
Giacomo Pedretti;John Moon;Pedro Bruel;Sergey Serebryakov;Ron M. Roth;Luca Buonanno;Archit Gajjar;Lei Zhao;Tobias Ziegler;Cong Xu;Martin Foltin;Paolo Faraboschi;Jim Ignowski;Catherine E. Graves
{"title":"X-TIME: Accelerating Large Tree Ensembles Inference for Tabular Data With Analog CAMs","authors":"Giacomo Pedretti;John Moon;Pedro Bruel;Sergey Serebryakov;Ron M. Roth;Luca Buonanno;Archit Gajjar;Lei Zhao;Tobias Ziegler;Cong Xu;Martin Foltin;Paolo Faraboschi;Jim Ignowski;Catherine E. Graves","doi":"10.1109/JXCDC.2024.3495634","DOIUrl":null,"url":null,"abstract":"Structured, or tabular, data are the most common format in data science. While deep learning models have proven formidable in learning from unstructured data such as images or speech, they are less accurate than simpler approaches when learning from tabular data. In contrast, modern tree-based machine learning (ML) models shine in extracting relevant information from structured data. An essential requirement in data science is to reduce model inference latency in cases where, for example, models are used in a closed loop with simulation to accelerate scientific discovery. However, the hardware acceleration community has mostly focused on deep neural networks and largely ignored other forms of ML. Previous work has described the use of an analog content addressable memory (CAM) component for efficiently mapping random forests (RFs). In this work, we develop an analog-digital architecture that implements a novel increased precision analog CAM and a programmable chip for inference of state-of-the-art tree-based ML models, such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and others. Thanks to hardware-aware training, X-TIME reaches state-of-the-art accuracy and \n<inline-formula> <tex-math>$119\\times $ </tex-math></inline-formula>\n higher throughput at \n<inline-formula> <tex-math>$9740\\times $ </tex-math></inline-formula>\n lower latency with \n<inline-formula> <tex-math>${\\gt }150\\times $ </tex-math></inline-formula>\n improved energy efficiency compared with a state-of-the-art GPU for models with up to 4096 trees and depth of 8, with a 19-W peak power consumption.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"10 ","pages":"116-124"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10753423","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10753423/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Structured, or tabular, data are the most common format in data science. While deep learning models have proven formidable in learning from unstructured data such as images or speech, they are less accurate than simpler approaches when learning from tabular data. In contrast, modern tree-based machine learning (ML) models shine in extracting relevant information from structured data. An essential requirement in data science is to reduce model inference latency in cases where, for example, models are used in a closed loop with simulation to accelerate scientific discovery. However, the hardware acceleration community has mostly focused on deep neural networks and largely ignored other forms of ML. Previous work has described the use of an analog content addressable memory (CAM) component for efficiently mapping random forests (RFs). In this work, we develop an analog-digital architecture that implements a novel increased precision analog CAM and a programmable chip for inference of state-of-the-art tree-based ML models, such as eXtreme Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), and others. Thanks to hardware-aware training, X-TIME reaches state-of-the-art accuracy and $119\times $ higher throughput at $9740\times $ lower latency with ${\gt }150\times $ improved energy efficiency compared with a state-of-the-art GPU for models with up to 4096 trees and depth of 8, with a 19-W peak power consumption.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
4.20%
发文量
11
审稿时长
13 weeks
期刊最新文献
Ferroelectric Transistor-Based Synaptic Crossbar Arrays: The Impact of Ferroelectric Thickness and Device-Circuit Interactions SpecPCM: A Low-Power PCM-Based In-Memory Computing Accelerator for Full-Stack Mass Spectrometry Analysis X-TIME: Accelerating Large Tree Ensembles Inference for Tabular Data With Analog CAMs Approximated 2-Bit Adders for Parallel In-Memristor Computing With a Novel Sum-of-Product Architecture System-Technology Co-Optimization for Dense Edge Architectures Using 3-D Integration and Nonvolatile Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1