Madison Manley;James Read;Ankit Kaul;Shimeng Yu;Muhannad Bakir
{"title":"Co-Optimization of Power Delivery Network Design for 3-D Heterogeneous Integration of RRAM-Based Compute In-Memory Accelerators","authors":"Madison Manley;James Read;Ankit Kaul;Shimeng Yu;Muhannad Bakir","doi":"10.1109/JXCDC.2025.3534560","DOIUrl":null,"url":null,"abstract":"Three-dimensional heterogeneous integration (3D-HI) offers promising solutions for incorporating substantial embedded memory into cutting-edge analog compute-in-memory (CIM) AI accelerators, addressing the need for on-chip acceleration of large AI models. However, this approach faces challenges with power supply noise (PSN) margins due to <inline-formula> <tex-math>$V_{\\text {DD}}$ </tex-math></inline-formula> scaling and increased power delivery network (PDN) impedance. This study demonstrates the necessity and benefits of 3D-HI for large-scale CIM accelerators, where 2-D implementations would exceed manufacturing reticle limits. Our 3-D designs achieve 39% higher energy efficiency, <inline-formula> <tex-math>$8\\times $ </tex-math></inline-formula> higher operation density, and improved throughput through shorter vertical interconnects. We quantify steady-state IR-drop impacts in 3D-HI CIM architectures using a framework that combines PDN modeling, 3D-HI power, performance, area estimation, and behavioral modeling. We demonstrate that a drop in supply voltage to CIM arrays increases sensitivity to process, voltage, and temperature (PVT) noise. Using our framework, we model IR-drop and simulate its impact on the accuracy of ResNet-50 and ResNet-152 when classifying images from the ImageNet 1k dataset in the presence of injected PVT noise. We analyze the impact of through-silicon via (TSV) design and placement to optimize the IR-drop and classification accuracy. For ResNet architectures in 3-D integration, we demonstrate that peripheral TSV placement provides an optimal balance between interconnect complexity and performance, achieving IR-drop below 10% of <inline-formula> <tex-math>$V_{\\text {DD}}$ </tex-math></inline-formula> while maintaining high classification accuracy.","PeriodicalId":54149,"journal":{"name":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","volume":"11 ","pages":"10-18"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854426","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Exploratory Solid-State Computational Devices and Circuits","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10854426/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Three-dimensional heterogeneous integration (3D-HI) offers promising solutions for incorporating substantial embedded memory into cutting-edge analog compute-in-memory (CIM) AI accelerators, addressing the need for on-chip acceleration of large AI models. However, this approach faces challenges with power supply noise (PSN) margins due to $V_{\text {DD}}$ scaling and increased power delivery network (PDN) impedance. This study demonstrates the necessity and benefits of 3D-HI for large-scale CIM accelerators, where 2-D implementations would exceed manufacturing reticle limits. Our 3-D designs achieve 39% higher energy efficiency, $8\times $ higher operation density, and improved throughput through shorter vertical interconnects. We quantify steady-state IR-drop impacts in 3D-HI CIM architectures using a framework that combines PDN modeling, 3D-HI power, performance, area estimation, and behavioral modeling. We demonstrate that a drop in supply voltage to CIM arrays increases sensitivity to process, voltage, and temperature (PVT) noise. Using our framework, we model IR-drop and simulate its impact on the accuracy of ResNet-50 and ResNet-152 when classifying images from the ImageNet 1k dataset in the presence of injected PVT noise. We analyze the impact of through-silicon via (TSV) design and placement to optimize the IR-drop and classification accuracy. For ResNet architectures in 3-D integration, we demonstrate that peripheral TSV placement provides an optimal balance between interconnect complexity and performance, achieving IR-drop below 10% of $V_{\text {DD}}$ while maintaining high classification accuracy.