{"title":"Intensive monocropping of bananas decreases the soil acid buffering capacity via ammonia-oxidizing bacteria","authors":"Pingshan Fan, Bingbing Xing, Xuehong Wu, Yanlin Chen, Shanshuai Chen, Yunze Ruan","doi":"10.1186/s40538-024-00704-8","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia-oxidizing microorganisms (AOM) are vital for soil nitrogen cycling, nutrient availability, and soil health during sustainable agriculture. Long-term continuous cultivation of bananas and improper chemical fertilization affect the adaptability of AOM; however, the underlying basis for this phenomenon is unclear. This study utilized 16S rRNA gene and metagenomic sequencing techniques to examine soil from banana plantations that were continuously cultivated for 2, 3, 7, 10, 12, and 13 years (Y2, Y3, Y7, Y10, Y12, and Y13, respectively). The results indicated a significant decrease in soil acidity buffering capacity (pHBC) with increasing years of continuous cropping. Furthermore, compared with forest soil (Y0), Y7, Y10, Y12, and Y13 soils exhibited a significantly increased potential nitrification rate (PNR) as well as an abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), with no significant difference in complete ammonia oxidizers (comammox). Principal component analysis (PCA) further demonstrated marked differences in chemical properties and ammonia-oxidizing microbial community structures between the soils under long-term (Y7, Y10, Y12, Y13) and short-term (Y2, Y3) banana cultivation. In addition, metagenome analysis results indicated that the relative abundance of <i>Nitrososphaera-</i>AOA and <i>Ca.</i> Nitrosocosmicus-AOA as well as <i>Nitrosospira</i>-AOB, Nitrosovibrio-AOB, <i>Nitrosomonas</i>-AOB, and comammox <i>Nitrospira jacu</i>s was significantly higher in Y7 and Y13 soils than in Y0 controls. Redundancy analysis (RDA) identified pHBC, CEC, and NH<sub>4</sub><sup>+</sup> as the primary chemical factor responsible for the differences in AOM microbial communities, whereas random forest analysis revealed that <i>Nitrosospira-AOB</i> significantly contributed to PNR. In summary, long-term continuous banana cultivation primarily stimulates AOB promote soil ammonia oxidation, leading to soil acidification.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00704-8","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00704-8","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ammonia-oxidizing microorganisms (AOM) are vital for soil nitrogen cycling, nutrient availability, and soil health during sustainable agriculture. Long-term continuous cultivation of bananas and improper chemical fertilization affect the adaptability of AOM; however, the underlying basis for this phenomenon is unclear. This study utilized 16S rRNA gene and metagenomic sequencing techniques to examine soil from banana plantations that were continuously cultivated for 2, 3, 7, 10, 12, and 13 years (Y2, Y3, Y7, Y10, Y12, and Y13, respectively). The results indicated a significant decrease in soil acidity buffering capacity (pHBC) with increasing years of continuous cropping. Furthermore, compared with forest soil (Y0), Y7, Y10, Y12, and Y13 soils exhibited a significantly increased potential nitrification rate (PNR) as well as an abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB), with no significant difference in complete ammonia oxidizers (comammox). Principal component analysis (PCA) further demonstrated marked differences in chemical properties and ammonia-oxidizing microbial community structures between the soils under long-term (Y7, Y10, Y12, Y13) and short-term (Y2, Y3) banana cultivation. In addition, metagenome analysis results indicated that the relative abundance of Nitrososphaera-AOA and Ca. Nitrosocosmicus-AOA as well as Nitrosospira-AOB, Nitrosovibrio-AOB, Nitrosomonas-AOB, and comammox Nitrospira jacus was significantly higher in Y7 and Y13 soils than in Y0 controls. Redundancy analysis (RDA) identified pHBC, CEC, and NH4+ as the primary chemical factor responsible for the differences in AOM microbial communities, whereas random forest analysis revealed that Nitrosospira-AOB significantly contributed to PNR. In summary, long-term continuous banana cultivation primarily stimulates AOB promote soil ammonia oxidation, leading to soil acidification.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.