{"title":"Plant Architecture Optimizes the Trait-Based Description and Classification of Vegetation.","authors":"Biying Liu, Sihao Yuan, Zhihui Chen, Panpan Zhao, Yi Wang, Wei Chu, Shuo Zhang, Wensheng Zhao, Shiqin Tan, Ting Zhou, Shaolin Peng","doi":"10.1111/pce.15314","DOIUrl":null,"url":null,"abstract":"<p><p>Trait-based approaches offer valuable perspectives for vegetation classification, but functional traits struggle to capture resource allocation among competing plants, showing limitations across scales. This study aimed to introduce plant architecture to enhance trait-based vegetation classification. Based on a forest transect survey along China's eastern coast from 2021 to 2023, data from 32 plots of coastal dwarf forests (CDF), characterized primarily by reduced plant height, and normal noncoastal dwarf forests (NCDF) were obtained. Their community characteristics were quantified, and classification and clustering models assessed the advantages of plant architecture in distinguishing these communities. The results indicated plant architecture traits are more critical for distinguishing different community types than leaf-based functional traits. Additionally, plant architecture traits are effective in clustering plant associations within the same community type. Because plant architectural traits are closely linked to habitat, phylogeny and community structure, providing a comprehensive description of vegetation. In contrast, traditional plant functional traits primarily reflect habitat information related to soil nutrients. Our findings underscore the importance of plant architecture in optimizing trait-based vegetation classification and suggest that variations in the plasticity of plant architecture traits may support the classification of CDF as a distinct vegetation unit.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15314","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Trait-based approaches offer valuable perspectives for vegetation classification, but functional traits struggle to capture resource allocation among competing plants, showing limitations across scales. This study aimed to introduce plant architecture to enhance trait-based vegetation classification. Based on a forest transect survey along China's eastern coast from 2021 to 2023, data from 32 plots of coastal dwarf forests (CDF), characterized primarily by reduced plant height, and normal noncoastal dwarf forests (NCDF) were obtained. Their community characteristics were quantified, and classification and clustering models assessed the advantages of plant architecture in distinguishing these communities. The results indicated plant architecture traits are more critical for distinguishing different community types than leaf-based functional traits. Additionally, plant architecture traits are effective in clustering plant associations within the same community type. Because plant architectural traits are closely linked to habitat, phylogeny and community structure, providing a comprehensive description of vegetation. In contrast, traditional plant functional traits primarily reflect habitat information related to soil nutrients. Our findings underscore the importance of plant architecture in optimizing trait-based vegetation classification and suggest that variations in the plasticity of plant architecture traits may support the classification of CDF as a distinct vegetation unit.
期刊介绍:
Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.