LXRα agonist differentially regulates BAFF expression and biological effects in RAW264.7 cells depending on growth status: LXRα activation and BAFF signaling in RAW264.7 cells.

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-01 Epub Date: 2024-11-30 DOI:10.1016/j.bbrc.2024.151067
Yisa Teng, Haiyan Xu, Xiaozhou He, Qianfeng Zhuang, Hao Lu, Renfang Xu, Dong Xue
{"title":"LXRα agonist differentially regulates BAFF expression and biological effects in RAW264.7 cells depending on growth status: LXRα activation and BAFF signaling in RAW264.7 cells.","authors":"Yisa Teng, Haiyan Xu, Xiaozhou He, Qianfeng Zhuang, Hao Lu, Renfang Xu, Dong Xue","doi":"10.1016/j.bbrc.2024.151067","DOIUrl":null,"url":null,"abstract":"<p><p>B- cell-activating factor (BAFF), which is essential for the survival and development of B cells, is mainly produced by myeloid cells such as macrophages. Abnormal macrophage infiltration and high BAFF expression in kidney allografts are associated with the occurrence and development of antibody-mediated rejection (ABMR). Nuclear hormone receptor Liver X receptors (LXRs), is a nonnegligible participant in regulating cholesterol metabolism and inflammatory responses. Nowadays the effects of LXRα activation on macrophages have been widely studied, however the effects of LXRα activation on BAFF expression and cell function due to the change of BAFF signaling have not yet been fully investigated. In the present study, LXRα activation alone was found to downregulate BAFF expression in quiescent RAW 264.7 cells, whereas LXRα agonist significantly upregulated BAFF expression in cells pretreated with lipopolysaccharide (LPS) for 6 h. The increased BAFF signaling promoted M1 polarization and enhanced cell viability, migration, and phagocytic ability. LXRα can directly bind to the BAFF promoter region and decrease BAFF expression in RAW264.7 cells. LXRα activation enhanced mitochondrial metabolism, which promoted BAFF expression in the LPS-activated cells. Our results indicate that subtle changes in the microenvironment would affect the biological function of macrophages, in which a variety of BAFF signaling pathways may also be involved, providing a new perspective on exploring the mechanism of allograft rejection and uncovering the potential reason for the unstable efficacy of anti-BAFF preparations in kidney transplant recipients.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"742 ","pages":"151067"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151067","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

B- cell-activating factor (BAFF), which is essential for the survival and development of B cells, is mainly produced by myeloid cells such as macrophages. Abnormal macrophage infiltration and high BAFF expression in kidney allografts are associated with the occurrence and development of antibody-mediated rejection (ABMR). Nuclear hormone receptor Liver X receptors (LXRs), is a nonnegligible participant in regulating cholesterol metabolism and inflammatory responses. Nowadays the effects of LXRα activation on macrophages have been widely studied, however the effects of LXRα activation on BAFF expression and cell function due to the change of BAFF signaling have not yet been fully investigated. In the present study, LXRα activation alone was found to downregulate BAFF expression in quiescent RAW 264.7 cells, whereas LXRα agonist significantly upregulated BAFF expression in cells pretreated with lipopolysaccharide (LPS) for 6 h. The increased BAFF signaling promoted M1 polarization and enhanced cell viability, migration, and phagocytic ability. LXRα can directly bind to the BAFF promoter region and decrease BAFF expression in RAW264.7 cells. LXRα activation enhanced mitochondrial metabolism, which promoted BAFF expression in the LPS-activated cells. Our results indicate that subtle changes in the microenvironment would affect the biological function of macrophages, in which a variety of BAFF signaling pathways may also be involved, providing a new perspective on exploring the mechanism of allograft rejection and uncovering the potential reason for the unstable efficacy of anti-BAFF preparations in kidney transplant recipients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1. Erratum to "Dietary state and impact of DMSO on Caenorhabditis elegans aging: Insights from healthspan analysis"[Biochem. Biophys. Res. Commun. (742),2025, 151156]. β-Caryophyllene attenuates oxidative stress and inflammatory response in LPS induced acute lung injury by targeting ACE2/MasR and Nrf2/HO-1/NF-κB axis. Ageing drop by drop: Disturbance of the membrane-less organelle biogenesis as an aging hallmark. Altered hypoxia- and redox-related transcriptional signatures in mitochondrial-DNA-depleted PC-3 cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1