β-Caryophyllene attenuates oxidative stress and inflammatory response in LPS induced acute lung injury by targeting ACE2/MasR and Nrf2/HO-1/NF-κB axis.

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-01-02 DOI:10.1016/j.bbrc.2024.151286
Pakter Niri, Achintya Saha, Subramanyam Polopalli, Mohit Kumar, Sanghita Das, Bidisha Saha, Danswrang Goyary, Yangchen Doma Bhutia, Sanjeev Karmakar, Sumit Kishor, Saidur Rahaman, Pronobesh Chattopadhyay
{"title":"β-Caryophyllene attenuates oxidative stress and inflammatory response in LPS induced acute lung injury by targeting ACE2/MasR and Nrf2/HO-1/NF-κB axis.","authors":"Pakter Niri, Achintya Saha, Subramanyam Polopalli, Mohit Kumar, Sanghita Das, Bidisha Saha, Danswrang Goyary, Yangchen Doma Bhutia, Sanjeev Karmakar, Sumit Kishor, Saidur Rahaman, Pronobesh Chattopadhyay","doi":"10.1016/j.bbrc.2024.151286","DOIUrl":null,"url":null,"abstract":"<p><p>Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), is a clinical syndrome that can cause pulmonary edema, inflammation, oxidative stress, and immunological dysregulations. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, possesses a variety of pharmacological properties and has the potential to be a therapeutic agent. This study aimed to comprehend the effect of BCP on Nrf2/HO-1/NF-κB and ACE2/MasR axis in a rat model of ALI by lipopolysaccharide (LPS) and the underlying mechanisms during this process. The study also examined pulmonary edema, BALF, and cytokine production to investigate inflammation and oxidative stress. In the LPS group, Western blot analysis showed decreased Nrf2/HO-1 and ACE2/MasR, including increased lung edema, elevated vascular permeability, neutrophil infiltration in BALF, increased cytokine levels, and histological changes. In comparison to the LPS group, BCP dramatically reduced lung edema, vascular permeability, and histological changes. Additionally, by lowering malondialdehyde and myeloperoxidase activity in lung tissues, it also reduced oxidative stress. BCP boosted IL-10 production and decreased the levels of pro-inflammatory cytokines and neutrophil infiltration. BCP administration decreased VEGF-A and SP-D expression, subsequently lowering NF-κB activation and cytokine production. Further, BCP altered ACE2 expression, indicating its involvement by activating the ACE2/Angiotensin (1-7)/MasR axis. In addition, BCP could stimulate the Nrf2/HO-1 anti-oxidant axis to suppress NF-κB and reduce inflammation. BCP modulation of the ACE2/MasR and Nrf2/HO-1/NF-κB axis impedes the course of ALI by influencing immunological response including but not limited to oxidative stress, the influx of neutrophils, and cytokine production. Hence, BCP may act as a potential candidate for management of ALI.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"746 ","pages":"151286"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151286","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), is a clinical syndrome that can cause pulmonary edema, inflammation, oxidative stress, and immunological dysregulations. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, possesses a variety of pharmacological properties and has the potential to be a therapeutic agent. This study aimed to comprehend the effect of BCP on Nrf2/HO-1/NF-κB and ACE2/MasR axis in a rat model of ALI by lipopolysaccharide (LPS) and the underlying mechanisms during this process. The study also examined pulmonary edema, BALF, and cytokine production to investigate inflammation and oxidative stress. In the LPS group, Western blot analysis showed decreased Nrf2/HO-1 and ACE2/MasR, including increased lung edema, elevated vascular permeability, neutrophil infiltration in BALF, increased cytokine levels, and histological changes. In comparison to the LPS group, BCP dramatically reduced lung edema, vascular permeability, and histological changes. Additionally, by lowering malondialdehyde and myeloperoxidase activity in lung tissues, it also reduced oxidative stress. BCP boosted IL-10 production and decreased the levels of pro-inflammatory cytokines and neutrophil infiltration. BCP administration decreased VEGF-A and SP-D expression, subsequently lowering NF-κB activation and cytokine production. Further, BCP altered ACE2 expression, indicating its involvement by activating the ACE2/Angiotensin (1-7)/MasR axis. In addition, BCP could stimulate the Nrf2/HO-1 anti-oxidant axis to suppress NF-κB and reduce inflammation. BCP modulation of the ACE2/MasR and Nrf2/HO-1/NF-κB axis impedes the course of ALI by influencing immunological response including but not limited to oxidative stress, the influx of neutrophils, and cytokine production. Hence, BCP may act as a potential candidate for management of ALI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Itaconate drives pro-inflammatory responses through proteasomal degradation of GLO1. Abscisic acid improves non-alcoholic fatty liver disease in mice through the AMPK/NRF2/KEAP1 signaling axis. Usefulness of serial in vivo imaging to directly assess the role of inflammation in thrombus resolution and organization. Apo structure of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate synthase DXPS: Dynamics and implications for inhibitor design. Erratum to "Dietary state and impact of DMSO on Caenorhabditis elegans aging: Insights from healthspan analysis"[Biochem. Biophys. Res. Commun. (742),2025, 151156].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1