Comparison of 2D and 3D lung lobe quantification with Ventilation/Perfusion Ratio.

Julia Katharina Vogt, Wolfgang Kurt Vogt, Alexander Heinzel, Felix M Mottaghy
{"title":"Comparison of 2D and 3D lung lobe quantification with Ventilation/Perfusion Ratio.","authors":"Julia Katharina Vogt, Wolfgang Kurt Vogt, Alexander Heinzel, Felix M Mottaghy","doi":"10.1055/a-2460-7254","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, standard 2D lung lobe quantification is compared with two 3D lung lobe quantification software tools to investigate the clinical benefit of a 3D approach. The accuracy of 2D versus 3D lung lobe quantification is evaluated based on the calculated numerical ventilation-perfusion ratio (VQR) using a receiver operating curve (ROC) analysis.A study group of 50 consecutive patients underwent a planar lung scintigraphy (anterior/posterior) as well as ventilation/perfusion single photon emission computed tomography (SPECT/CT) to exclude acute pulmonary embolism. All data were acquired with SPECT OPTIMA NM/CT 640 (GE Healthcare). 2D analysis was performed for all ventilation/perfusion scans using a lung analysis tool (Syngo Workstation, Siemens Healthineers). 3D quantification analysis was performed using QLUNG (Q. Lung, Xeleris 4.0, GE Healthcare) and LLQ (Hermes Hybrid 3D Lung Lobar Quantification, Hermes Medical Solutions). The area under the ROC curve (AUC) served as a decision criterion to find the best agreement between clinical PE findings and calculated PE candidates of the 2D and 3D methods. The significance of the ROC curves was evaluated using the DeLong comparison.A significant difference between 2D/3D could be determined. Both 3D approaches showed robust and comparable results. The AUC range of [0.10, 0.67] was given for 2D lobar analysis, QLUNG AUC range revealed in [0.39,0.74] and LLQ AUC range was [0.42,0.72]. Averaged over all lung lobes an AUC=0.39 was given for 2D analysis and AUC=0.58 was given for LLQ/QLUNG.We could demonstrate the better performance of 3D analysis compared to 2D analysis. Consequently, is recommended to use a 3D approach in clinical practice.</p>","PeriodicalId":94161,"journal":{"name":"Nuklearmedizin. Nuclear medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuklearmedizin. Nuclear medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/a-2460-7254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, standard 2D lung lobe quantification is compared with two 3D lung lobe quantification software tools to investigate the clinical benefit of a 3D approach. The accuracy of 2D versus 3D lung lobe quantification is evaluated based on the calculated numerical ventilation-perfusion ratio (VQR) using a receiver operating curve (ROC) analysis.A study group of 50 consecutive patients underwent a planar lung scintigraphy (anterior/posterior) as well as ventilation/perfusion single photon emission computed tomography (SPECT/CT) to exclude acute pulmonary embolism. All data were acquired with SPECT OPTIMA NM/CT 640 (GE Healthcare). 2D analysis was performed for all ventilation/perfusion scans using a lung analysis tool (Syngo Workstation, Siemens Healthineers). 3D quantification analysis was performed using QLUNG (Q. Lung, Xeleris 4.0, GE Healthcare) and LLQ (Hermes Hybrid 3D Lung Lobar Quantification, Hermes Medical Solutions). The area under the ROC curve (AUC) served as a decision criterion to find the best agreement between clinical PE findings and calculated PE candidates of the 2D and 3D methods. The significance of the ROC curves was evaluated using the DeLong comparison.A significant difference between 2D/3D could be determined. Both 3D approaches showed robust and comparable results. The AUC range of [0.10, 0.67] was given for 2D lobar analysis, QLUNG AUC range revealed in [0.39,0.74] and LLQ AUC range was [0.42,0.72]. Averaged over all lung lobes an AUC=0.39 was given for 2D analysis and AUC=0.58 was given for LLQ/QLUNG.We could demonstrate the better performance of 3D analysis compared to 2D analysis. Consequently, is recommended to use a 3D approach in clinical practice.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The impact of the xSPECT reconstruction algorithms on the recovery coefficients value for small tumors: a phantom study with 177Lu. PSMA - Targeted Clinical Molecular Imaging of Atherosclerosis: Correlation with Cardiovascular Risk Factors. [18F]FDG PET/CT Imaging and Hematological Parameters Can Help Predict HPV Status in Head and Neck Cancer. A metastatic melanoma with an atypical low 18F-FDG uptake. Comparison of 2D and 3D lung lobe quantification with Ventilation/Perfusion Ratio.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1