Reversible Ca2+ signaling and enhanced paracellular transport in endothelial monolayer induced by acoustic bubbles and targeted microbeads

IF 8.7 1区 化学 Q1 ACOUSTICS Ultrasonics Sonochemistry Pub Date : 2024-12-02 DOI:10.1016/j.ultsonch.2024.107181
Jiawei Lin, Chaofeng Qiao, Hao Jiang, Zhihui Liu, Yaxin Hu, Wei Liu, Yu Yong, Fenfang Li
{"title":"Reversible Ca2+ signaling and enhanced paracellular transport in endothelial monolayer induced by acoustic bubbles and targeted microbeads","authors":"Jiawei Lin, Chaofeng Qiao, Hao Jiang, Zhihui Liu, Yaxin Hu, Wei Liu, Yu Yong, Fenfang Li","doi":"10.1016/j.ultsonch.2024.107181","DOIUrl":null,"url":null,"abstract":"Ultrasound and microbubble mediated blood brain barrier opening is a non-invasive and effective technique for drug delivery to targeted brain region. However, the exact mechanisms are not fully resolved. The influences of Ca<ce:sup loc=\"post\">2+</ce:sup> signaling on sonoporation and endothelial tight junctional regulation affect the efficiency and biosafety of the technique. Therefore, an improved understanding of how ultrasound evokes Ca<ce:sup loc=\"post\">2+</ce:sup> signaling in the brain endothelial monolayer, and its correlation to endothelial permeability change is necessary. Here, we examined the effects of SonoVue microbubbles or integrin-targeted microbeads on ultrasound induced bioeffects in brain microvascular endothelial monolayer using an acoustically-coupled microscopy system, where focused ultrasound exposure and real-time recording of Ca<ce:sup loc=\"post\">2+</ce:sup> signaling and membrane perforation were performed. Microbubbles induced robust Ca<ce:sup loc=\"post\">2+</ce:sup> responses, often accompanied by cell poration, while ultrasound with microbeads elicited reversible Ca<ce:sup loc=\"post\">2+</ce:sup> response without membrane poration. At the conditions evoking reversible Ca<ce:sup loc=\"post\">2+</ce:sup> signaling, intracellular Ca<ce:sup loc=\"post\">2+</ce:sup> release and reactive oxygen species played key roles for microbubbles induced Ca<ce:sup loc=\"post\">2+</ce:sup> signaling while activation of mechanosensitive ion channels was essential for the case of microbeads. Trans-well diffusion analysis revealed significantly higher <ce:italic>trans</ce:italic>-endothelial transport of 70 kDa FITC-dextran for both integrin-targeted microbeads and microbubbles compared to the control group. Further immunofluorescence staining showed disruption of cell junctions with microbubble stimulation and reversible remodeling of many cell junctions by ultrasound with integrin-targeted microbeads. This investigation provides new insights for ultrasound induced Ca<ce:sup loc=\"post\">2+</ce:sup> signaling and its influence on endothelial permeability, which may help develop new strategies for safe and efficient drug/gene delivery in the vascular system.","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"37 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ultsonch.2024.107181","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound and microbubble mediated blood brain barrier opening is a non-invasive and effective technique for drug delivery to targeted brain region. However, the exact mechanisms are not fully resolved. The influences of Ca2+ signaling on sonoporation and endothelial tight junctional regulation affect the efficiency and biosafety of the technique. Therefore, an improved understanding of how ultrasound evokes Ca2+ signaling in the brain endothelial monolayer, and its correlation to endothelial permeability change is necessary. Here, we examined the effects of SonoVue microbubbles or integrin-targeted microbeads on ultrasound induced bioeffects in brain microvascular endothelial monolayer using an acoustically-coupled microscopy system, where focused ultrasound exposure and real-time recording of Ca2+ signaling and membrane perforation were performed. Microbubbles induced robust Ca2+ responses, often accompanied by cell poration, while ultrasound with microbeads elicited reversible Ca2+ response without membrane poration. At the conditions evoking reversible Ca2+ signaling, intracellular Ca2+ release and reactive oxygen species played key roles for microbubbles induced Ca2+ signaling while activation of mechanosensitive ion channels was essential for the case of microbeads. Trans-well diffusion analysis revealed significantly higher trans-endothelial transport of 70 kDa FITC-dextran for both integrin-targeted microbeads and microbubbles compared to the control group. Further immunofluorescence staining showed disruption of cell junctions with microbubble stimulation and reversible remodeling of many cell junctions by ultrasound with integrin-targeted microbeads. This investigation provides new insights for ultrasound induced Ca2+ signaling and its influence on endothelial permeability, which may help develop new strategies for safe and efficient drug/gene delivery in the vascular system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声学气泡和靶向微珠诱导的内皮单层可逆Ca2+信号传导和细胞旁运输增强
超声和微泡介导的血脑屏障打开是一种无创、有效的靶向脑区给药技术。然而,确切的机制还没有完全解决。Ca2+信号对超声穿孔和内皮紧密连接调节的影响影响了该技术的效率和生物安全性。因此,有必要进一步了解超声如何唤起脑内皮单层中的Ca2+信号,以及它与内皮通透性变化的相关性。在这里,我们使用声学耦合显微镜系统检查了SonoVue微泡或整合素靶向微珠对超声诱导的脑微血管内皮单层生物效应的影响,其中进行了聚焦超声暴露和Ca2+信号和膜穿孔的实时记录。微泡诱导了强大的Ca2+反应,通常伴随着细胞穿孔,而微珠超声诱导了可逆的Ca2+反应,没有膜穿孔。在可逆Ca2+信号传导的条件下,细胞内Ca2+释放和活性氧在微泡诱导Ca2+信号传导中起关键作用,而机械敏感离子通道的激活对微珠的情况至关重要。跨孔扩散分析显示,与对照组相比,整合素靶向微珠和微泡中70 kDa的fitc -葡聚糖的跨内皮转运显著增加。进一步的免疫荧光染色显示,微泡刺激可破坏细胞连接,整合素靶向微珠超声可对许多细胞连接进行可逆重塑。这项研究为超声诱导Ca2+信号及其对内皮细胞通透性的影响提供了新的见解,这可能有助于开发安全有效的血管系统药物/基因递送新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrasonics Sonochemistry
Ultrasonics Sonochemistry 化学-化学综合
CiteScore
15.80
自引率
11.90%
发文量
361
审稿时长
59 days
期刊介绍: Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels. Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.
期刊最新文献
Ultrasound-assisted enhancement of bioactive compounds in hawthorn vinegar: A functional approach to anticancer and antidiabetic effects. Innovative strategy for full-scale polar components explicition and ultrasonic-assisted optimization of Astragalus membranaceus flower. Utilizing ultrasound for the extraction of polysaccharides from the tuber of Typhonium giganteum Engl.: Extraction conditions, structural characterization and bioactivities. Functional nanocrystal as effective contrast agents for dual-mode imaging: Live-cell sonoluminescence and contrast-enhanced echography. Process, dynamics and bioeffects of acoustic droplet vaporization induced by dual-frequency focused ultrasound
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1