{"title":"From placenta to the foetus: a systematic review of in vitro models of stress- and inflammation-induced depression in pregnancy","authors":"Madeline Kirkpatrick, Gargi Mandal, Ismail Elhadidy, Nicole Mariani, Kristi Priestley, Carmine M. Pariante, Alessandra Borsini","doi":"10.1038/s41380-024-02866-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Depression in pregnancy can increase vulnerability for psychiatric disorders in the offspring, likely via the transfer of heightened maternal cortisol and cytokines to the <i>in-utero</i> environment. However, the precise cellular and molecular mechanisms, are largely unclear. Animal studies can represent this complex pathophysiology at a systemic level but are expensive and ethically challenging. While simpler, in vitro models offer high-throughput opportunities. Therefore, this systematic review integrates findings of in vitro models relevant to depression in pregnancy, to generate novel hypotheses and targets for intervention.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The systematic analysis covered studies investigating glucocorticoid or cytokine challenges on placental or foetal neural progenitor cells (NPCs), with or without co-treatment with sex hormones.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>Of the 50 included studies, 11 used placental cells and 39 NPCs; surprisingly, only one used a combination of oestrogen and cortisol, and no study combined placental cells and NPCs. In placental cells, cortisol or cytokines decreased nutrient transporter expression and steroidogenic enzyme activity, and increased cytokine production. NPCs exhibited decreases in proliferation and differentiation, via specific molecular pathways, namely, inhibition of hedgehog signalling and activation of kynurenine pathway. In these cells, studies also highlighted epigenetic priming of stress and inflammatory pathways.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Overall, results suggest that stress and inflammation not only detrimentally impact placental regulation of nutrients and hormones to the foetus, but also activate downstream pathways through increased inflammation in the placenta, ultimately eliciting adverse effects on foetal neurogenesis. Future research should investigate how sex hormones regulate these mechanisms, with the aim of developing targeted therapeutic approaches for depression in pregnancy.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"31 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02866-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Depression in pregnancy can increase vulnerability for psychiatric disorders in the offspring, likely via the transfer of heightened maternal cortisol and cytokines to the in-utero environment. However, the precise cellular and molecular mechanisms, are largely unclear. Animal studies can represent this complex pathophysiology at a systemic level but are expensive and ethically challenging. While simpler, in vitro models offer high-throughput opportunities. Therefore, this systematic review integrates findings of in vitro models relevant to depression in pregnancy, to generate novel hypotheses and targets for intervention.
Methods
The systematic analysis covered studies investigating glucocorticoid or cytokine challenges on placental or foetal neural progenitor cells (NPCs), with or without co-treatment with sex hormones.
Results
Of the 50 included studies, 11 used placental cells and 39 NPCs; surprisingly, only one used a combination of oestrogen and cortisol, and no study combined placental cells and NPCs. In placental cells, cortisol or cytokines decreased nutrient transporter expression and steroidogenic enzyme activity, and increased cytokine production. NPCs exhibited decreases in proliferation and differentiation, via specific molecular pathways, namely, inhibition of hedgehog signalling and activation of kynurenine pathway. In these cells, studies also highlighted epigenetic priming of stress and inflammatory pathways.
Conclusions
Overall, results suggest that stress and inflammation not only detrimentally impact placental regulation of nutrients and hormones to the foetus, but also activate downstream pathways through increased inflammation in the placenta, ultimately eliciting adverse effects on foetal neurogenesis. Future research should investigate how sex hormones regulate these mechanisms, with the aim of developing targeted therapeutic approaches for depression in pregnancy.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.