Chang Li, Rishabh D. Guha, Stephen D. House, J. David Bazak, Yue Yu, Laidong Zhou, Kevin Zavadil, Kristin A. Persson, Linda F. Nazar
{"title":"A dynamically bare metal interface enables reversible magnesium electrodeposition at 50 mAh cm−2","authors":"Chang Li, Rishabh D. Guha, Stephen D. House, J. David Bazak, Yue Yu, Laidong Zhou, Kevin Zavadil, Kristin A. Persson, Linda F. Nazar","doi":"10.1016/j.joule.2024.11.007","DOIUrl":null,"url":null,"abstract":"Understanding and facilitating pure magnesium nucleation/growth electrodeposition behavior with ultrahigh Coulombic efficiency is complicated by the phenomenon of solid electrolyte interphase (SEI) formation in state-of-the-art, halogen-free magnesium electrolytes. Defining the electrolyte properties necessary to achieve ideal electrodeposition/stripping (E/S) thus remains elusive. Here, we reveal for the first time, rapid magnesium electrodeposition behavior that forms densely aligned, micron-sized thin platelets by establishing a dynamic bare magnesium/electrolyte interface during high-rate net plating. This effectively “SEI-free” interface allows facile magnesium diffusion and migration in stripping with near-unity E/S efficiency under demanding conditions over long-term cycling. The intrinsic electrolyte stability of the salt/solvent at the molecular level is the key to forming such an interface. The efficacy of the dynamic bare interface and an electrodeposited, free-standing magnesium anode is demonstrated in a high-areal-capacity full cell. These findings provide new design principles and fundamental understanding of interfacial chemistry in multivalent metal batteries.","PeriodicalId":343,"journal":{"name":"Joule","volume":"10 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.11.007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding and facilitating pure magnesium nucleation/growth electrodeposition behavior with ultrahigh Coulombic efficiency is complicated by the phenomenon of solid electrolyte interphase (SEI) formation in state-of-the-art, halogen-free magnesium electrolytes. Defining the electrolyte properties necessary to achieve ideal electrodeposition/stripping (E/S) thus remains elusive. Here, we reveal for the first time, rapid magnesium electrodeposition behavior that forms densely aligned, micron-sized thin platelets by establishing a dynamic bare magnesium/electrolyte interface during high-rate net plating. This effectively “SEI-free” interface allows facile magnesium diffusion and migration in stripping with near-unity E/S efficiency under demanding conditions over long-term cycling. The intrinsic electrolyte stability of the salt/solvent at the molecular level is the key to forming such an interface. The efficacy of the dynamic bare interface and an electrodeposited, free-standing magnesium anode is demonstrated in a high-areal-capacity full cell. These findings provide new design principles and fundamental understanding of interfacial chemistry in multivalent metal batteries.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.