{"title":"In situ electrochemical regeneration of permanganate ion for sustainable oxidation reactions","authors":"Chengyi Hu, Zixiao Zhao, Wanli Wang, Weijie Zou, Shengjun Liu, Xiaoliang Fang, Xiangyu Su, Nanfeng Zheng","doi":"10.1016/j.joule.2024.101807","DOIUrl":null,"url":null,"abstract":"Numerous stoichiometric oxidants have been employed for the oxidative production of high-end fine chemicals. However, regeneration of these oxidants often suffers from high energy consumption and complex separation. Here, we report an <em>in situ</em> electrochemical approach for the regeneration of a widely used oxidant, permanganate (MnO<sub>4</sub><sup>−</sup>), by coupling electrochemical and chemical reactions in an integrated system. Using electrosynthesis of 1,3,2-dioxathiolane 2,2-dioxide (DTD), a commercial electrolyte additive in Li-ion batteries, as a representative example, the electrochemically generated MnO<sub>4</sub><sup>−</sup> shows remarkable performance as a redox mediator for catalyzing ethylene sulfite oxidation to produce DTD. By employing pulsed voltammetry, electrosynthesis of DTD can be performed in a single-pass continuous flow electrolyzer with 85% yield and 72% Faradaic efficiency. The practicality of the developed method is demonstrated with a wide substrate scope, robust anode stability, and scaling capability to achieve a DTD production capacity of 500 g/h in a 1-m<sup>2</sup> electrolyzer.","PeriodicalId":343,"journal":{"name":"Joule","volume":"37 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.101807","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous stoichiometric oxidants have been employed for the oxidative production of high-end fine chemicals. However, regeneration of these oxidants often suffers from high energy consumption and complex separation. Here, we report an in situ electrochemical approach for the regeneration of a widely used oxidant, permanganate (MnO4−), by coupling electrochemical and chemical reactions in an integrated system. Using electrosynthesis of 1,3,2-dioxathiolane 2,2-dioxide (DTD), a commercial electrolyte additive in Li-ion batteries, as a representative example, the electrochemically generated MnO4− shows remarkable performance as a redox mediator for catalyzing ethylene sulfite oxidation to produce DTD. By employing pulsed voltammetry, electrosynthesis of DTD can be performed in a single-pass continuous flow electrolyzer with 85% yield and 72% Faradaic efficiency. The practicality of the developed method is demonstrated with a wide substrate scope, robust anode stability, and scaling capability to achieve a DTD production capacity of 500 g/h in a 1-m2 electrolyzer.
期刊介绍:
Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.