Mitigating Winner-Take-All Resource Competition through Antithetic Control Mechanism.

IF 3.7 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS ACS Synthetic Biology Pub Date : 2024-12-06 DOI:10.1021/acssynbio.4c00476
Suchana Chakravarty, Rishabh Guttal, Rong Zhang, Xiao-Jun Tian
{"title":"Mitigating Winner-Take-All Resource Competition through Antithetic Control Mechanism.","authors":"Suchana Chakravarty, Rishabh Guttal, Rong Zhang, Xiao-Jun Tian","doi":"10.1021/acssynbio.4c00476","DOIUrl":null,"url":null,"abstract":"<p><p>Competition among genes for limited transcriptional and translational resources impairs the functionality and modularity of synthetic gene circuits. Traditional control mechanisms, such as feedforward and negative feedback loops, have been proposed to alleviate these challenges, but they often focus on individual modules or inadvertently increase the burden on the system. In this study, we introduce three novel multimodule control strategies─local regulation, global regulation, and negatively competitive regulation (NCR)─that employ an antithetic regulatory mechanism to mitigate resource competition. Our systematic analysis reveals that while all three control mechanisms can alleviate resource competition to some extent, the NCR controller consistently outperforms both the global and local controllers. This superior performance stems from the unique architecture of the NCR controller, which is independent of specific parameter choices. Notably, the NCR controller not only facilitates the activation of less active modules through cross-activation mechanisms but also effectively utilizes the resource consumption within the controller itself. These findings emphasize the critical role of carefully designing the topology of multimodule controllers to ensure robust performance.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00476","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Competition among genes for limited transcriptional and translational resources impairs the functionality and modularity of synthetic gene circuits. Traditional control mechanisms, such as feedforward and negative feedback loops, have been proposed to alleviate these challenges, but they often focus on individual modules or inadvertently increase the burden on the system. In this study, we introduce three novel multimodule control strategies─local regulation, global regulation, and negatively competitive regulation (NCR)─that employ an antithetic regulatory mechanism to mitigate resource competition. Our systematic analysis reveals that while all three control mechanisms can alleviate resource competition to some extent, the NCR controller consistently outperforms both the global and local controllers. This superior performance stems from the unique architecture of the NCR controller, which is independent of specific parameter choices. Notably, the NCR controller not only facilitates the activation of less active modules through cross-activation mechanisms but also effectively utilizes the resource consumption within the controller itself. These findings emphasize the critical role of carefully designing the topology of multimodule controllers to ensure robust performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.00
自引率
10.60%
发文量
380
审稿时长
6-12 weeks
期刊介绍: The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism. Topics may include, but are not limited to: Design and optimization of genetic systems Genetic circuit design and their principles for their organization into programs Computational methods to aid the design of genetic systems Experimental methods to quantify genetic parts, circuits, and metabolic fluxes Genetic parts libraries: their creation, analysis, and ontological representation Protein engineering including computational design Metabolic engineering and cellular manufacturing, including biomass conversion Natural product access, engineering, and production Creative and innovative applications of cellular programming Medical applications, tissue engineering, and the programming of therapeutic cells Minimal cell design and construction Genomics and genome replacement strategies Viral engineering Automated and robotic assembly platforms for synthetic biology DNA synthesis methodologies Metagenomics and synthetic metagenomic analysis Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction Gene optimization Methods for genome-scale measurements of transcription and metabolomics Systems biology and methods to integrate multiple data sources in vitro and cell-free synthetic biology and molecular programming Nucleic acid engineering.
期刊最新文献
Mitigating Winner-Take-All Resource Competition through Antithetic Control Mechanism. Automated Design of Oligopools and Rapid Analysis of Massively Parallel Barcoded Measurements. Stem Loop Mediated Transgene Modulation in Human T Cells. MIRA/PfAgo-Mediated Biosensor for Multiplex Human Enteroviruses Virus Typing Detection on HFMD. Engineering a Silk Protein-Mediated Customizable Compartment for Modular Metabolic Synthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1