From SMILES to Enhanced Molecular Property Prediction: A Unified Multimodal Framework with Predicted 3D Conformers and Contrastive Learning Techniques.
Long D Nguyen, Quang H Nguyen, Quang H Trinh, Binh P Nguyen
{"title":"From SMILES to Enhanced Molecular Property Prediction: A Unified Multimodal Framework with Predicted 3D Conformers and Contrastive Learning Techniques.","authors":"Long D Nguyen, Quang H Nguyen, Quang H Trinh, Binh P Nguyen","doi":"10.1021/acs.jcim.4c01240","DOIUrl":null,"url":null,"abstract":"<p><p>We present a novel molecular property prediction framework that requires only the SMILES format as input but is designed to be multimodal by incorporating predicted 3D conformer representations. Our model captures comprehensive molecular features by leveraging both the sequential character structure of SMILES and the three-dimensional spatial structure of conformers. The framework employs contrastive learning techniques, utilizing InfoNCE loss to align SMILES and conformer embeddings, along with task-specific loss functions, such as ConR for regression and SupCon for classification. To address data imbalance, we incorporate feature distribution smoothing (FDS), a common challenge in drug discovery. We evaluated the framework through multiple case studies, including SARS-CoV-2 drug docking score prediction, molecular property prediction using MoleculeNet data sets, and kinase inhibitor prediction for JAK-1, JAK-2, and MAPK-14 using custom data sets curated from PubChem. The results consistently outperformed state-of-the-art methods, with ConR and FDS significantly improving regression tasks and SupCon enhancing classification performance. These findings highlight the flexibility and robustness of our multimodal model, demonstrating its effectiveness across diverse molecular property prediction tasks, with promising applications in drug discovery and molecular analysis.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01240","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
We present a novel molecular property prediction framework that requires only the SMILES format as input but is designed to be multimodal by incorporating predicted 3D conformer representations. Our model captures comprehensive molecular features by leveraging both the sequential character structure of SMILES and the three-dimensional spatial structure of conformers. The framework employs contrastive learning techniques, utilizing InfoNCE loss to align SMILES and conformer embeddings, along with task-specific loss functions, such as ConR for regression and SupCon for classification. To address data imbalance, we incorporate feature distribution smoothing (FDS), a common challenge in drug discovery. We evaluated the framework through multiple case studies, including SARS-CoV-2 drug docking score prediction, molecular property prediction using MoleculeNet data sets, and kinase inhibitor prediction for JAK-1, JAK-2, and MAPK-14 using custom data sets curated from PubChem. The results consistently outperformed state-of-the-art methods, with ConR and FDS significantly improving regression tasks and SupCon enhancing classification performance. These findings highlight the flexibility and robustness of our multimodal model, demonstrating its effectiveness across diverse molecular property prediction tasks, with promising applications in drug discovery and molecular analysis.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.