Yating Jia, Xin Xu, Hao Lu, Kanwal Fatima, Yali Zhang, Haibo Du, Jin Yang, Xiaojun Zhou, Xiaofeng Sui, Lei Hou, Yanan Pang, Chuanglong He
{"title":"A super soft thermoplastic biodegradable elastomer with high elasticity for arterial regeneration.","authors":"Yating Jia, Xin Xu, Hao Lu, Kanwal Fatima, Yali Zhang, Haibo Du, Jin Yang, Xiaojun Zhou, Xiaofeng Sui, Lei Hou, Yanan Pang, Chuanglong He","doi":"10.1016/j.biomaterials.2024.122985","DOIUrl":null,"url":null,"abstract":"<p><p>Elastomers with innovative performance will provide new opportunities for solving problems in soft tissue repair, such as arterial regeneration. Herein, we present a thermoplastic biodegradable elastomer (PPS) that differs from the rigid, low-elastic traditional ones. It shows super softness (0.41 ± 0.052 MPa), high stretchability (3239 ± 357 %), and viscoelasticity similar to natural soft tissues. In addition, it also has good processability and appropriate degradability, estimated at 4-8 months for complete degradation in vivo. This excellent overall performance makes it a great support material for soft tissue repair and a powerful modifying agent for improving existing materials. For example, introducing it into poly(l-lactide) scaffolds through thermally induced phase separation can create a unique microporous structure with interconnected large pores (diameter >10 μm), demonstrating high efficiency in inducing cell infiltration. Blending it with poly(ε-caprolactone) through electrospinning can produce a composite fibrous film with significantly improved comprehensive performance, displaying artery-matched mechanical properties. Building on the above, we constructed a tri-layer tissue-engineered vascular graft for arterial regeneration, exhibiting promising remodeling outcomes in rabbits.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"122985"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.122985","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Elastomers with innovative performance will provide new opportunities for solving problems in soft tissue repair, such as arterial regeneration. Herein, we present a thermoplastic biodegradable elastomer (PPS) that differs from the rigid, low-elastic traditional ones. It shows super softness (0.41 ± 0.052 MPa), high stretchability (3239 ± 357 %), and viscoelasticity similar to natural soft tissues. In addition, it also has good processability and appropriate degradability, estimated at 4-8 months for complete degradation in vivo. This excellent overall performance makes it a great support material for soft tissue repair and a powerful modifying agent for improving existing materials. For example, introducing it into poly(l-lactide) scaffolds through thermally induced phase separation can create a unique microporous structure with interconnected large pores (diameter >10 μm), demonstrating high efficiency in inducing cell infiltration. Blending it with poly(ε-caprolactone) through electrospinning can produce a composite fibrous film with significantly improved comprehensive performance, displaying artery-matched mechanical properties. Building on the above, we constructed a tri-layer tissue-engineered vascular graft for arterial regeneration, exhibiting promising remodeling outcomes in rabbits.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.