An ergometer dataset to measure muscle bioenergetics with magnetic resonance techniques.

IF 1 Q3 MULTIDISCIPLINARY SCIENCES Data in Brief Pub Date : 2024-11-07 eCollection Date: 2024-12-01 DOI:10.1016/j.dib.2024.111114
Usman Rehman, Gwenaelle Begue, Armin Ahmadi, Paolo Taboga, Jorge Gamboa, Baback Roshanravan, Thomas Jue
{"title":"An ergometer dataset to measure muscle bioenergetics with magnetic resonance techniques.","authors":"Usman Rehman, Gwenaelle Begue, Armin Ahmadi, Paolo Taboga, Jorge Gamboa, Baback Roshanravan, Thomas Jue","doi":"10.1016/j.dib.2024.111114","DOIUrl":null,"url":null,"abstract":"<p><p>Applying magnetic resonance methods to measure the metabolic response in exercise poses a technical challenge because the construction of the ergometer must use non-magnetic components and assess work in the confined space of a magnet bore. The present report details the fabrication of a non-magnetic ergometer for use in a standard Siemens 3 Tesla (T) spectrometer. Using the ergometer, researchers can measure the <sup>31</sup>P magnetic resonance spectroscopy (MRS) signals during leg muscle exercise and exercise recovery. In particular, the phosphocreatine (PCr) kinetics during exercise recovery reflects the mitochondrial oxidative capacity, and the inorganic phosphate (P<sub>i</sub>) signal tracks the cellular pH. The ergometer allows for the use of a personalized, and variable load that normalizes the work for all study participants regardless of their leg strength. The ergometer then enables a standardized MRS comparison of leg muscle bioenergetics.</p>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"57 ","pages":"111114"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617988/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.dib.2024.111114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Applying magnetic resonance methods to measure the metabolic response in exercise poses a technical challenge because the construction of the ergometer must use non-magnetic components and assess work in the confined space of a magnet bore. The present report details the fabrication of a non-magnetic ergometer for use in a standard Siemens 3 Tesla (T) spectrometer. Using the ergometer, researchers can measure the 31P magnetic resonance spectroscopy (MRS) signals during leg muscle exercise and exercise recovery. In particular, the phosphocreatine (PCr) kinetics during exercise recovery reflects the mitochondrial oxidative capacity, and the inorganic phosphate (Pi) signal tracks the cellular pH. The ergometer allows for the use of a personalized, and variable load that normalizes the work for all study participants regardless of their leg strength. The ergometer then enables a standardized MRS comparison of leg muscle bioenergetics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个用磁共振技术测量肌肉生物能量的测力计数据集。
应用磁共振方法来测量运动中的代谢反应是一项技术挑战,因为测力仪的构造必须使用非磁性元件,并在磁力孔的密闭空间中评估工作。本报告详细介绍了用于标准西门子3特斯拉(T)光谱仪的非磁性测功仪的制造。通过使用测力计,研究人员可以测量腿部肌肉锻炼和运动恢复过程中的31P磁共振波谱(MRS)信号。特别是,运动恢复过程中的磷酸肌酸(PCr)动力学反映了线粒体氧化能力,无机磷酸盐(Pi)信号跟踪细胞ph。测力仪允许使用个性化的可变负荷,使所有研究参与者的工作正常化,而不管他们的腿部力量如何。然后,测力器可以对腿部肌肉生物能量学进行标准化的MRS比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Data in Brief
Data in Brief MULTIDISCIPLINARY SCIENCES-
CiteScore
3.10
自引率
0.00%
发文量
996
审稿时长
70 days
期刊介绍: Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.
期刊最新文献
An ecological connectivity dataset for Black Sea obtained from sea currents. A dataset on environmental DNA, bacterio-, phyto- and zooplankton from an emerging periglacial lagoon in Svalbard, Arctic. "Play by play": A dataset of handball and basketball game situations in a standardized space. Smartphone image dataset for radish plant leaf disease classification from Bangladesh. LipBengal: Pioneering Bengali lip-reading dataset for pronunciation mapping through lip gestures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1