A simple statistical framework for small sample studies.

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2024-12-05 DOI:10.1037/met0000710
D Samuel Schwarzkopf, Zien Huang
{"title":"A simple statistical framework for small sample studies.","authors":"D Samuel Schwarzkopf, Zien Huang","doi":"10.1037/met0000710","DOIUrl":null,"url":null,"abstract":"<p><p>Most studies in psychology, neuroscience, and life science research make inferences about how strong an effect is on average in the population. Yet, many research questions could instead be answered by testing for the universality of the phenomenon under investigation. By using reliable experimental designs that maximize both sensitivity and specificity of individual experiments, each participant or subject can be treated as an independent replication. This approach is common in certain subfields. To date, there is however no formal approach for calculating the evidential value of such small sample studies and to define a priori evidence thresholds that must be met to draw meaningful conclusions. Here we present such a framework, based on the ratio of binomial probabilities between a model assuming the universality of the phenomenon versus the null hypothesis that any incidence of the effect is sporadic. We demonstrate the benefits of this approach, which permits strong conclusions from samples as small as two to five participants and the flexibility of sequential testing. This approach will enable researchers to preregister experimental designs based on small samples and thus enhance the utility and credibility of such studies. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000710","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Most studies in psychology, neuroscience, and life science research make inferences about how strong an effect is on average in the population. Yet, many research questions could instead be answered by testing for the universality of the phenomenon under investigation. By using reliable experimental designs that maximize both sensitivity and specificity of individual experiments, each participant or subject can be treated as an independent replication. This approach is common in certain subfields. To date, there is however no formal approach for calculating the evidential value of such small sample studies and to define a priori evidence thresholds that must be met to draw meaningful conclusions. Here we present such a framework, based on the ratio of binomial probabilities between a model assuming the universality of the phenomenon versus the null hypothesis that any incidence of the effect is sporadic. We demonstrate the benefits of this approach, which permits strong conclusions from samples as small as two to five participants and the flexibility of sequential testing. This approach will enable researchers to preregister experimental designs based on small samples and thus enhance the utility and credibility of such studies. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小样本研究的简单统计框架。
心理学、神经科学和生命科学的大多数研究都推断出这种影响在人群中的平均强度。然而,许多研究问题可以通过测试被调查现象的普遍性来回答。通过使用可靠的实验设计,最大限度地提高个体实验的敏感性和特异性,每个参与者或受试者都可以被视为一个独立的复制。这种方法在某些子领域中很常见。然而,到目前为止,还没有正式的方法来计算这种小样本研究的证据值,并确定必须满足的先验证据阈值才能得出有意义的结论。在这里,我们提出了这样一个框架,基于假设现象的普遍性的模型与假设效应的任何发生率是零星的零假设之间的二项概率的比率。我们展示了这种方法的好处,它允许从小到两到五个参与者的样本和顺序测试的灵活性得出强有力的结论。这种方法将使研究人员能够基于小样本预先注册实验设计,从而提高此类研究的实用性和可信度。(PsycInfo Database Record (c) 2024 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Troubleshooting Bayesian cognitive models. A novel approach to estimate moderated treatment effects and moderated mediated effects with continuous moderators. Is exploratory factor analysis always to be preferred? A systematic comparison of factor analytic techniques throughout the confirmatory-exploratory continuum. Everything has its price: Foundations of cost-sensitive machine learning and its application in psychology. A primer on synthesizing individual participant data obtained from complex sampling surveys: A two-stage IPD meta-analysis approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1