Jeremy Jia Hao Chan, Pak Wing Leung, Helena Kilgour, Panagiotis Dervenis
{"title":"Facial artificial intelligence in ophthalmology and medicine: fundamental and transformative applications.","authors":"Jeremy Jia Hao Chan, Pak Wing Leung, Helena Kilgour, Panagiotis Dervenis","doi":"10.1177/25158414241302871","DOIUrl":null,"url":null,"abstract":"<p><p>The integration of artificial intelligence (AI) in healthcare, particularly in the domain of facial processing tasks, has witnessed substantial growth in the 21st century. However, this requires sufficient appraisal for clinicians and researchers to adequately understand nomenclature and key concepts commonly used in this field. This article aims to elucidate the diverse applications of facial processing tasks, such as facial landmark extraction, face detection, face tracking, facial expression recognition and action unit detection, and their relevance to ophthalmology and other medical specialties. The keywords 'ophthalmology', 'facial artificial intelligence', 'facial recognition' and 'periorbital measurements' were used on PubMed and Ovid, between September 2012 and September 2022, to identify and screen for eligible articles. Studies reporting on human patients in ophthalmology, plastic, maxillofacial and cosmetic surgery with ocular lesions whose facial biometrics were processed by AI and written in the English language were included. A total of 291 and 513 articles were identified on PubMed and Ovid respectively. Twenty articles were included for analysis in this literature review after duplicates, inaccessible articles and articles without full manuscripts were excluded. Although fully automated algorithms can share the workload in healthcare systems and relieve strains on manpower, rigorous testing is crucial, followed by the challenges of convincing management bodies that it would work in reality, coupled with the costs of implementing specialised functional hardware and software. While patients have a valid concern that it would reduce physical contact with clinicians, it is important for clinicians not to replace clinical decision-making with AI alone.</p>","PeriodicalId":23054,"journal":{"name":"Therapeutic Advances in Ophthalmology","volume":"16 ","pages":"25158414241302871"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618896/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic Advances in Ophthalmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25158414241302871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The integration of artificial intelligence (AI) in healthcare, particularly in the domain of facial processing tasks, has witnessed substantial growth in the 21st century. However, this requires sufficient appraisal for clinicians and researchers to adequately understand nomenclature and key concepts commonly used in this field. This article aims to elucidate the diverse applications of facial processing tasks, such as facial landmark extraction, face detection, face tracking, facial expression recognition and action unit detection, and their relevance to ophthalmology and other medical specialties. The keywords 'ophthalmology', 'facial artificial intelligence', 'facial recognition' and 'periorbital measurements' were used on PubMed and Ovid, between September 2012 and September 2022, to identify and screen for eligible articles. Studies reporting on human patients in ophthalmology, plastic, maxillofacial and cosmetic surgery with ocular lesions whose facial biometrics were processed by AI and written in the English language were included. A total of 291 and 513 articles were identified on PubMed and Ovid respectively. Twenty articles were included for analysis in this literature review after duplicates, inaccessible articles and articles without full manuscripts were excluded. Although fully automated algorithms can share the workload in healthcare systems and relieve strains on manpower, rigorous testing is crucial, followed by the challenges of convincing management bodies that it would work in reality, coupled with the costs of implementing specialised functional hardware and software. While patients have a valid concern that it would reduce physical contact with clinicians, it is important for clinicians not to replace clinical decision-making with AI alone.