Multiomics unraveled that gibberellin signaling underlies adaptation of rice to ciprofloxacin stress: Calling for concerns on the adverse effects of pharmaceutical residues in water during agricultural irrigations
{"title":"Multiomics unraveled that gibberellin signaling underlies adaptation of rice to ciprofloxacin stress: Calling for concerns on the adverse effects of pharmaceutical residues in water during agricultural irrigations","authors":"Xin Qi, Rui Zhao, Xiaona Zhang, Shaoguo Ru, Jiu-Qiang Xiong","doi":"10.1016/j.jhazmat.2024.136818","DOIUrl":null,"url":null,"abstract":"Residual concentrations of antibiotics in water can reach ng mL<sup>-1</sup> - µg mL<sup>-1</sup> levels, which pose high risks to crops during irrigation; however, the interactions between rice and antibiotics, as well as the defense mechanisms of rice at their early growth phase remain unclear. In this study, we investigated the uptake dynamics of a ubiquitously found antibiotic, ciprofloxacin (CIP) at 0.1, 1, 6.5, and 20<!-- --> <!-- -->µg<!-- --> <!-- -->mL<sup>-1</sup> in rice seedlings. We found gradually bioaccumulated CIP induced significant physiological changes including inhibited growth of roots and leaves of rice seedlings, and decreased pigment contents, which can be caused by disrupted homeostasis of reactive oxygen species. Integrating roots transcriptomics, metabolomics, and validation experiments, we found that rice seedlings synthesized more gibberellins to trigger the expression of transcription factors such as group VII ethylene response factors, which induced metabolic reprogramming to yield more fatty acids derivates. These compounds including eicosanoids, isoprenoids, and fatty acids and conjugates can act as signaling molecules, as well as antioxidants and energy sources to achieve rice recovery. This conclusion is supported by the evidence showing that adding gibberellins in rice seedlings culture decreased the accumulated CIP and improved rice growth; whilst, disrupting gibberellin signaling pathway using paclobutrazol as an inhibitor increased uptaken CIP in both roots and leaves with augmenting the antibiotic stress on rice. This study has demonstrated a gibberellin-based defense mechanism in rice for defense of CIP stress, which might have significant environmental applications since we can add minor gibberellins to reduce bioaccumulated CIP with simultaneously promoting rice growth at their early phases.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"82 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.136818","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Residual concentrations of antibiotics in water can reach ng mL-1 - µg mL-1 levels, which pose high risks to crops during irrigation; however, the interactions between rice and antibiotics, as well as the defense mechanisms of rice at their early growth phase remain unclear. In this study, we investigated the uptake dynamics of a ubiquitously found antibiotic, ciprofloxacin (CIP) at 0.1, 1, 6.5, and 20 µg mL-1 in rice seedlings. We found gradually bioaccumulated CIP induced significant physiological changes including inhibited growth of roots and leaves of rice seedlings, and decreased pigment contents, which can be caused by disrupted homeostasis of reactive oxygen species. Integrating roots transcriptomics, metabolomics, and validation experiments, we found that rice seedlings synthesized more gibberellins to trigger the expression of transcription factors such as group VII ethylene response factors, which induced metabolic reprogramming to yield more fatty acids derivates. These compounds including eicosanoids, isoprenoids, and fatty acids and conjugates can act as signaling molecules, as well as antioxidants and energy sources to achieve rice recovery. This conclusion is supported by the evidence showing that adding gibberellins in rice seedlings culture decreased the accumulated CIP and improved rice growth; whilst, disrupting gibberellin signaling pathway using paclobutrazol as an inhibitor increased uptaken CIP in both roots and leaves with augmenting the antibiotic stress on rice. This study has demonstrated a gibberellin-based defense mechanism in rice for defense of CIP stress, which might have significant environmental applications since we can add minor gibberellins to reduce bioaccumulated CIP with simultaneously promoting rice growth at their early phases.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.