{"title":"Modeling the dynamics of COVID-19 Epidemic with a reaction-diffusion framework: a case study from Thailand","authors":"Rahat Zarin, Usa Wannasingha Humphries","doi":"10.1140/epjp/s13360-024-05870-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel mathematical framework to examine the spread of COVID-19 using a two-dimensional reaction-diffusion epidemic model. The model is structured into six compartments, which account for different stages of the disease and its transmission: (S) Susceptible, (E) Exposed, (I<span>\\(_a\\)</span>) Asymptomatic, (I<span>\\(_s\\)</span>) Symptomatic, (Q) Quarantined, and (R) Recovered, forming the SEQI<span>\\(_a\\)</span>I<span>\\(_s\\)</span>R structure. The basic reproduction number, <span>\\(R_0\\)</span>, is derived through the next-generation matrix method, providing insights into the potential for disease outbreak. Model parameters are estimated using least squares curve fitting to match observed data accurately. To solve the model equations, a combination of explicit finite difference methods and an operator splitting technique is employed, effectively capturing both time and spatial dynamics. The stability of the disease-free and endemic equilibrium states is rigorously analyzed to understand the conditions under which the disease can persist or be eradicated. The study also presents comprehensive simulations that compare scenarios with and without spatial diffusion, offering a robust verification of the model’s accuracy through numerical and theoretical validation. The findings provide a deeper understanding of the spatial and temporal dynamics of COVID-19 spread and suggest potential strategies for controlling the epidemic.</p></div>","PeriodicalId":792,"journal":{"name":"The European Physical Journal Plus","volume":"139 12","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal Plus","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjp/s13360-024-05870-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces a novel mathematical framework to examine the spread of COVID-19 using a two-dimensional reaction-diffusion epidemic model. The model is structured into six compartments, which account for different stages of the disease and its transmission: (S) Susceptible, (E) Exposed, (I\(_a\)) Asymptomatic, (I\(_s\)) Symptomatic, (Q) Quarantined, and (R) Recovered, forming the SEQI\(_a\)I\(_s\)R structure. The basic reproduction number, \(R_0\), is derived through the next-generation matrix method, providing insights into the potential for disease outbreak. Model parameters are estimated using least squares curve fitting to match observed data accurately. To solve the model equations, a combination of explicit finite difference methods and an operator splitting technique is employed, effectively capturing both time and spatial dynamics. The stability of the disease-free and endemic equilibrium states is rigorously analyzed to understand the conditions under which the disease can persist or be eradicated. The study also presents comprehensive simulations that compare scenarios with and without spatial diffusion, offering a robust verification of the model’s accuracy through numerical and theoretical validation. The findings provide a deeper understanding of the spatial and temporal dynamics of COVID-19 spread and suggest potential strategies for controlling the epidemic.
期刊介绍:
The aims of this peer-reviewed online journal are to distribute and archive all relevant material required to document, assess, validate and reconstruct in detail the body of knowledge in the physical and related sciences.
The scope of EPJ Plus encompasses a broad landscape of fields and disciplines in the physical and related sciences - such as covered by the topical EPJ journals and with the explicit addition of geophysics, astrophysics, general relativity and cosmology, mathematical and quantum physics, classical and fluid mechanics, accelerator and medical physics, as well as physics techniques applied to any other topics, including energy, environment and cultural heritage.