Meiyan Hu, Peijiang Zhou, Chao Meng, Xiaobin Li, Jingyi Xie, Xuan Zhang, Guangshui Na
{"title":"The coupling effect and ecological risk assessment of iron, manganese, and arsenic in the water environment of the central Yangtze River Basin, China.","authors":"Meiyan Hu, Peijiang Zhou, Chao Meng, Xiaobin Li, Jingyi Xie, Xuan Zhang, Guangshui Na","doi":"10.1007/s10653-024-02307-6","DOIUrl":null,"url":null,"abstract":"<p><p>Excessive heavy metal in drinking water are harmful to human body. Groundwater was still the drinking water resource in most of rural areas in the central of the Yangtze River Basin. Heavy metals of Fe, Mn, and As in the low plain region of the Yangtze River Basin significantly exceeded the standard, resulting in 16.67% and 5.00% of water samples in the area reaching moderate and severe heavy metal pollution states. However, the coupling effect and ecological risks of iron, manganese, and arsenic in the water environment are unknown. This paper found that the dissolution of iron-bearing and manganese-bearing minerals into groundwater affected each other, when the burial depth of groundwater was less than 20 m. Conversely, the dissolution of minerals containing iron and arsenic into the groundwater interacted with each other when the groundwater depth was greater than 20 m. The precipitation of siderite (FeCO<sub>3</sub>) and rhodochrosite (MnCO<sub>3</sub>) may control the dissolved Fe and Mn in groundwater. The area between Yangtze River and Han River was more affected by industrial activities, and the south area of the Yangtze River was more affected by agricultural activities. This paper not only strengthened the understanding of the risk of heavy metal pollution in local groundwater, but also provided important scientific basis for the protection of regional groundwater ecological environment.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 1","pages":"8"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02307-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Excessive heavy metal in drinking water are harmful to human body. Groundwater was still the drinking water resource in most of rural areas in the central of the Yangtze River Basin. Heavy metals of Fe, Mn, and As in the low plain region of the Yangtze River Basin significantly exceeded the standard, resulting in 16.67% and 5.00% of water samples in the area reaching moderate and severe heavy metal pollution states. However, the coupling effect and ecological risks of iron, manganese, and arsenic in the water environment are unknown. This paper found that the dissolution of iron-bearing and manganese-bearing minerals into groundwater affected each other, when the burial depth of groundwater was less than 20 m. Conversely, the dissolution of minerals containing iron and arsenic into the groundwater interacted with each other when the groundwater depth was greater than 20 m. The precipitation of siderite (FeCO3) and rhodochrosite (MnCO3) may control the dissolved Fe and Mn in groundwater. The area between Yangtze River and Han River was more affected by industrial activities, and the south area of the Yangtze River was more affected by agricultural activities. This paper not only strengthened the understanding of the risk of heavy metal pollution in local groundwater, but also provided important scientific basis for the protection of regional groundwater ecological environment.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.