View-symmetric representations of faces in human and artificial neural networks.

IF 2 3区 心理学 Q3 BEHAVIORAL SCIENCES Neuropsychologia Pub Date : 2024-12-05 DOI:10.1016/j.neuropsychologia.2024.109061
Xun Zhu, David M Watson, Daniel Rogers, Timothy J Andrews
{"title":"View-symmetric representations of faces in human and artificial neural networks.","authors":"Xun Zhu, David M Watson, Daniel Rogers, Timothy J Andrews","doi":"10.1016/j.neuropsychologia.2024.109061","DOIUrl":null,"url":null,"abstract":"<p><p>View symmetry has been suggested to be an important intermediate representation between view-specific and view-invariant representations of faces in the human brain. Here, we compared view-symmetry in humans and a deep convolutional neural network (DCNN) trained to recognise faces. First, we compared the output of the DCNN to head rotations in yaw (left-right), pitch (up-down) and roll (in-plane rotation). For yaw, an initial view-specific representation was evident in the convolutional layers, but a view-symmetric representation emerged in the fully-connected layers. Consistent with a role in the recognition of faces, we found that view-symmetric responses to yaw were greater for same identity compared to different identity faces. In contrast, we did not find a similar transition from view-specific to view-symmetric representations in the DCNN for either pitch or roll. These findings suggest that view-symmetry emerges when opposite rotations of the head lead to mirror images. Next, we compared the view-symmetric patterns of response to yaw in the DCNN with corresponding behavioural and neural responses in humans. We found that responses in the fully-connected layers of the DCNN correlated with judgements of perceptual similarity and with the responses of higher visual regions. These findings suggest that view-symmetric representations may be computationally efficient way to represent faces in humans and artificial neural networks for the recognition of identity.</p>","PeriodicalId":19279,"journal":{"name":"Neuropsychologia","volume":" ","pages":"109061"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropsychologia","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.neuropsychologia.2024.109061","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

View symmetry has been suggested to be an important intermediate representation between view-specific and view-invariant representations of faces in the human brain. Here, we compared view-symmetry in humans and a deep convolutional neural network (DCNN) trained to recognise faces. First, we compared the output of the DCNN to head rotations in yaw (left-right), pitch (up-down) and roll (in-plane rotation). For yaw, an initial view-specific representation was evident in the convolutional layers, but a view-symmetric representation emerged in the fully-connected layers. Consistent with a role in the recognition of faces, we found that view-symmetric responses to yaw were greater for same identity compared to different identity faces. In contrast, we did not find a similar transition from view-specific to view-symmetric representations in the DCNN for either pitch or roll. These findings suggest that view-symmetry emerges when opposite rotations of the head lead to mirror images. Next, we compared the view-symmetric patterns of response to yaw in the DCNN with corresponding behavioural and neural responses in humans. We found that responses in the fully-connected layers of the DCNN correlated with judgements of perceptual similarity and with the responses of higher visual regions. These findings suggest that view-symmetric representations may be computationally efficient way to represent faces in humans and artificial neural networks for the recognition of identity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropsychologia
Neuropsychologia 医学-行为科学
CiteScore
5.10
自引率
3.80%
发文量
228
审稿时长
4 months
期刊介绍: Neuropsychologia is an international interdisciplinary journal devoted to experimental and theoretical contributions that advance understanding of human cognition and behavior from a neuroscience perspective. The journal will consider for publication studies that link brain function with cognitive processes, including attention and awareness, action and motor control, executive functions and cognitive control, memory, language, and emotion and social cognition.
期刊最新文献
Attentional, anticipatory and spatial cognition fluctuate throughout the menstrual cycle: Potential implications for female sport. Creating together: an interbrain model of group creativity. Tennis experience impacts time estimation within different timing processes: An ERP study. Construction and use of mental models: Organizing principles for the science of brain and mind. View-symmetric representations of faces in human and artificial neural networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1