PECVD-derived oxygen-doped vertical graphene-skinned carbon cloth toward efficient solar steam and water-evaporation-induced electricity cogeneration

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-02-01 DOI:10.1016/j.nanoen.2024.110543
Zihao Zhai , Jieyi Chen , Xiang Li , Qingyue Jiang , Jie Bao , Yongqi Wang , Qi Liu , Yufang Li , Xuemei Li
{"title":"PECVD-derived oxygen-doped vertical graphene-skinned carbon cloth toward efficient solar steam and water-evaporation-induced electricity cogeneration","authors":"Zihao Zhai ,&nbsp;Jieyi Chen ,&nbsp;Xiang Li ,&nbsp;Qingyue Jiang ,&nbsp;Jie Bao ,&nbsp;Yongqi Wang ,&nbsp;Qi Liu ,&nbsp;Yufang Li ,&nbsp;Xuemei Li","doi":"10.1016/j.nanoen.2024.110543","DOIUrl":null,"url":null,"abstract":"<div><div>Integration of solar steam production and water-evaporation-induced electricity generation has become a promising strategy to optimize the existing water-energy nexus. However, owing to the different requirement of material design for water management, satisfying solar steam and water-evaporation-induced electricity cogeneration at high efficiency with a facile and controllable material construction still faces a great challenge. Herein, oxygen-doped vertical graphene (OVG), which possesses vertical structure with high light absorption and abundant nanoconfined channels, was directly deposited on macroporous carbon cloth (CC) by plasma-enhanced chemical vapor deposition (PECVD) to induce strong electrokinetic effect and ensure rapid water evaporation. The creative OVG/CC with different conformal graphene skinned was controllably constructed in PECVD system with the change of deposition temperature and the aid of in-situ carbon-dioxide plasma post-treatment. Benefited from the favorable structure prepared at 800 ℃ with intense light absorption on surface and strong electrical interaction at solid-water interface, the OVG/CC-based device presented efficient outputs with an evaporation rate of 2.78 kg m<sup>−2</sup> h<sup>−1</sup>, a voltage of 0.75 V and a current of 2.67 μA in DI water, and with an evaporation rate of 2.69 kg m<sup>−2</sup> h<sup>−1</sup>, a voltage of 0.52 V and a current of 24.11 μA in real seawater respectively, accompanied with the good cycling stability and long-term durability. Moreover, the device could also purify various water sources and drive electron components for practical applications. This work provides a promising CVD strategy for constructing carbon-based composite materials toward efficient clean water and electricity cogeneration.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"134 ","pages":"Article 110543"},"PeriodicalIF":16.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285524012953","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Integration of solar steam production and water-evaporation-induced electricity generation has become a promising strategy to optimize the existing water-energy nexus. However, owing to the different requirement of material design for water management, satisfying solar steam and water-evaporation-induced electricity cogeneration at high efficiency with a facile and controllable material construction still faces a great challenge. Herein, oxygen-doped vertical graphene (OVG), which possesses vertical structure with high light absorption and abundant nanoconfined channels, was directly deposited on macroporous carbon cloth (CC) by plasma-enhanced chemical vapor deposition (PECVD) to induce strong electrokinetic effect and ensure rapid water evaporation. The creative OVG/CC with different conformal graphene skinned was controllably constructed in PECVD system with the change of deposition temperature and the aid of in-situ carbon-dioxide plasma post-treatment. Benefited from the favorable structure prepared at 800 ℃ with intense light absorption on surface and strong electrical interaction at solid-water interface, the OVG/CC-based device presented efficient outputs with an evaporation rate of 2.78 kg m−2 h−1, a voltage of 0.75 V and a current of 2.67 μA in DI water, and with an evaporation rate of 2.69 kg m−2 h−1, a voltage of 0.52 V and a current of 24.11 μA in real seawater respectively, accompanied with the good cycling stability and long-term durability. Moreover, the device could also purify various water sources and drive electron components for practical applications. This work provides a promising CVD strategy for constructing carbon-based composite materials toward efficient clean water and electricity cogeneration.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pecvd衍生的氧掺杂垂直石墨烯皮碳布用于高效太阳能蒸汽和水蒸发诱导的热电联产
太阳能蒸汽生产和水蒸发发电的整合已成为优化现有水能关系的一种有前途的策略。然而,由于水管理对材料设计的不同要求,用一种易于控制的材料结构来满足太阳能蒸汽和水蒸发发电的高效热电联产仍然面临着很大的挑战。本文采用等离子体增强化学气相沉积(PECVD)技术将垂直结构、高光吸收和丰富纳米限制通道的氧掺杂垂直石墨烯(OVG)直接沉积在大孔碳布(CC)上,以诱导强电动力学效应并保证水分快速蒸发。通过改变沉积温度和原位二氧化碳等离子后处理,在PECVD系统中可控地构建了具有不同适形石墨烯表皮的创新型OVG/CC。基于OVG/ cc的器件在800℃下制备的良好结构,具有表面强光吸收和固水界面强电相互作用,在去离子水中蒸发量为2.78 kg m-2 h-1,电压为0.75 V,电流为2.67 μA,在真实海水中蒸发量为2.69 kg m-2 h-1,电压为0.52 V,电流为24.11 μA。具有良好的循环稳定性和长期耐用性。此外,该装置还可以净化各种水源和驱动电子元件,具有实际应用价值。这项工作为构建高效清洁水和电热电联产的碳基复合材料提供了一种有前途的CVD策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Bioinspired extreme environment adaptive hydrogel enabled by weakening hydrogen bonding Regulating Cation Ordering in Lithium-Rich Layered Cathodes for Enhanced Anionic Redox Reactions Mutualistic Symbiotic Wireless Node for Next-Era Smart Transportation Constructing a high-power self-powered electrochemical pressure sensor for multimode pressure detections Wearable Flexible Solid-State Supercapacitors: Interface Engineering Using Functionalized Hexagonal Boron Nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1