Regulating cation ordering in lithium-rich layered cathodes for enhanced anionic redox reactions

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-02-04 DOI:10.1016/j.nanoen.2025.110742
Jianwen Wang , Long Gu , Chao Wang , Yuying Zhang , Wencheng Su , Yongtai Xu , Wenjing Li , Hui Ying Yang , Chunzhen Yang
{"title":"Regulating cation ordering in lithium-rich layered cathodes for enhanced anionic redox reactions","authors":"Jianwen Wang ,&nbsp;Long Gu ,&nbsp;Chao Wang ,&nbsp;Yuying Zhang ,&nbsp;Wencheng Su ,&nbsp;Yongtai Xu ,&nbsp;Wenjing Li ,&nbsp;Hui Ying Yang ,&nbsp;Chunzhen Yang","doi":"10.1016/j.nanoen.2025.110742","DOIUrl":null,"url":null,"abstract":"<div><div>Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, these OR reactions frequently result in local structural changes, large voltage hysteresis, irreversible oxygen oxidation, and capacity decline. In this work, we provide a mechanistic insight into how the transition metal-Li (TM-Li) cation ordering affects the anionic redox performance. By developing two polymorphs of Li<sub>2</sub>Ir<sub>0.75</sub>Fe<sub>0.25</sub>O<sub>3</sub> with different levels of TM-Li ordering, we demonstrate that the cation-disordered structure can enhance the transition metal-oxygen (TM-O) hybridization. In addition, the hybrid cation and anionic redox processes, with the complex intermediate (Ir<sup>5.5 +</sup>-Fe<sup>4+</sup>-O<sup><em>n</em>-</sup>) formed at high voltages, demonstrate large capacity contribution and good reversibility. Our findings underscore the pivotal role of TM-Li ordering on OR activity and stability, which is vital for the development of high-capacity electrodes for Li-ion batteries.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"136 ","pages":"Article 110742"},"PeriodicalIF":17.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525001016","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Utilizing reversible lattice oxygen redox (OR) in battery electrodes is an essential strategy to overcome the capacity limitation set by conventional transition metal redox. However, these OR reactions frequently result in local structural changes, large voltage hysteresis, irreversible oxygen oxidation, and capacity decline. In this work, we provide a mechanistic insight into how the transition metal-Li (TM-Li) cation ordering affects the anionic redox performance. By developing two polymorphs of Li2Ir0.75Fe0.25O3 with different levels of TM-Li ordering, we demonstrate that the cation-disordered structure can enhance the transition metal-oxygen (TM-O) hybridization. In addition, the hybrid cation and anionic redox processes, with the complex intermediate (Ir5.5 +-Fe4+-On-) formed at high voltages, demonstrate large capacity contribution and good reversibility. Our findings underscore the pivotal role of TM-Li ordering on OR activity and stability, which is vital for the development of high-capacity electrodes for Li-ion batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调节富锂层状阴极的阳离子有序以增强阴离子氧化还原反应
在电池电极中利用可逆晶格氧氧化还原(OR)是克服传统过渡金属氧化还原造成的容量限制的必要策略。然而,这些OR反应经常导致局部结构改变、电压滞后大、不可逆氧氧化和容量下降。在这项工作中,我们提供了过渡金属-锂(TM-Li)阳离子顺序如何影响阴离子氧化还原性能的机制见解。通过制备两种不同TM-Li有序水平的Li2Ir0.75Fe0.25O3多晶,我们证明了阳离子无序结构可以增强过渡金属-氧(TM-O)的杂化。此外,在高压下形成复合中间体(Ir5.5+- fe4 +- on -)的正阴离子杂化氧化还原过程表现出较大的容量贡献和良好的可逆性。我们的研究结果强调了TM-Li排序对OR活性和稳定性的关键作用,这对于锂离子电池高容量电极的开发至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Temperature-Triggered Switching of the Photo-thermal Catalysis Mechanism on Pt/TiO2 for Efficient Hydrogen Production Electro-active Phase Assisted All-Fiber Triboelectric Nanogenerator (AF-TENG) for Energy Harvesting and Human Joint Angle Monitoring Electrochemical Dynamics of Imidazolium Ionic Liquids at Graphene Electrodes for Energy Storage Applications Columnar Structure Solid-Liquid Nanogenerator Based on Triboiontronics Synergistic Solvation Engineering of Ionic Liquid Electrolytes Enables Highly Reversible Zn Anode under Wide Temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1