High cycle tensile fatigue behavior of steel rebar reinforced - UHPFRC at high R-ratio

IF 5.7 2区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Fatigue Pub Date : 2024-12-04 DOI:10.1016/j.ijfatigue.2024.108749
Jian Zhan, Alain Nussbaumer, Eugen Brühwiler
{"title":"High cycle tensile fatigue behavior of steel rebar reinforced - UHPFRC at high R-ratio","authors":"Jian Zhan, Alain Nussbaumer, Eugen Brühwiler","doi":"10.1016/j.ijfatigue.2024.108749","DOIUrl":null,"url":null,"abstract":"This paper investigates the high cycle tensile fatigue behavior of steel rebar reinforced − UHPFRC elements, at a fatigue load ratio, i.e., R-ratio of 0.3, representative for structural applications. Prior to testing, magnetoscopy is conducted on each specimen to determine the local fiber orientation and volume inside UHPFRC. During testing, global specimen deformation is recorded by displacement transducers; specimen surface is monitored by digital image correlation; and strain along rebars inside the specimen is measured by fiber-optic sensors. Based on the test results, an S-N diagram with a high regression coefficient is obtained. Hereby, the normalized fatigue force S is defined as the ratio between the maximum fatigue force and the estimated specimen ultimate tensile resistance. The fatigue endurance limit is identified as being about S = 0.40. It is found that fatigue deformation of the specimen mainly occurs in the zones with low fiber orientation coefficient <mml:math altimg=\"si8.svg\"><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:msub></mml:math> of UHPFRC (<mml:math altimg=\"si8.svg\"><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:mn>0</mml:mn><mml:mo>,</mml:mo><mml:mi>y</mml:mi></mml:mrow></mml:msub></mml:math> decreases when average angle between fiber axis and principle tensile direction changes from 0° to 90°), where the strain along steel rebars also have their higher value and increase rates during fatigue testing. The lowest UHPFRC fiber orientation determines the locus of crack localization and of fatigue fracture of steel rebars, thus final fracture of the elements.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"28 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108749","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the high cycle tensile fatigue behavior of steel rebar reinforced − UHPFRC elements, at a fatigue load ratio, i.e., R-ratio of 0.3, representative for structural applications. Prior to testing, magnetoscopy is conducted on each specimen to determine the local fiber orientation and volume inside UHPFRC. During testing, global specimen deformation is recorded by displacement transducers; specimen surface is monitored by digital image correlation; and strain along rebars inside the specimen is measured by fiber-optic sensors. Based on the test results, an S-N diagram with a high regression coefficient is obtained. Hereby, the normalized fatigue force S is defined as the ratio between the maximum fatigue force and the estimated specimen ultimate tensile resistance. The fatigue endurance limit is identified as being about S = 0.40. It is found that fatigue deformation of the specimen mainly occurs in the zones with low fiber orientation coefficient μ0,y of UHPFRC (μ0,y decreases when average angle between fiber axis and principle tensile direction changes from 0° to 90°), where the strain along steel rebars also have their higher value and increase rates during fatigue testing. The lowest UHPFRC fiber orientation determines the locus of crack localization and of fatigue fracture of steel rebars, thus final fracture of the elements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钢筋- UHPFRC在高r比下的高周拉伸疲劳性能
本文研究了钢筋加筋- UHPFRC构件在疲劳载荷比(即r比为0.3)下的高周拉伸疲劳行为,该疲劳载荷比具有结构应用代表性。在测试之前,对每个样品进行磁镜检查,以确定UHPFRC内部的局部纤维取向和体积。在测试过程中,位移传感器记录了试件的整体变形;采用数字图像相关技术对试样表面进行监测;通过光纤传感器测量试件内部钢筋的应变。根据试验结果,得到了回归系数较高的S-N图。其中归一化疲劳力S定义为最大疲劳力与估计试件极限抗拉阻力之比。疲劳极限确定为S = 0.40左右。结果表明,试样的疲劳变形主要发生在纤维取向系数μ0,y较低的区域(当纤维轴与主拉伸方向的平均夹角从0°变化到90°时,μ0,y减小),其中沿钢筋方向的应变也有较高的值和增加速率。UHPFRC纤维的最低取向决定了钢筋的裂纹局部化轨迹和疲劳断裂轨迹,从而决定了构件的最终断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Fatigue
International Journal of Fatigue 工程技术-材料科学:综合
CiteScore
10.70
自引率
21.70%
发文量
619
审稿时长
58 days
期刊介绍: Typical subjects discussed in International Journal of Fatigue address: Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements) Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions) Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation) Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering Smart materials and structures that can sense and mitigate fatigue degradation Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.
期刊最新文献
A comprehensive analysis of fatigue in wood and wood products Mechanisms of fatigue crack growth in 7050-T6 aluminium alloy Multiaxial fatigue model describing crack growth behavior and its application in welded structures of railway frames Assessment of binder test methods for detecting cracking susceptibility in asphalt mixtures Controllable kilohertz impact fatigue loading functioned by cyclic stress wave of Hopkinson tension bar and its application for TC4 titanium alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1