Alexander Greiner, Nina Reiter, Jan Hinrichsen, Manuel P Kainz, Gerhard Sommer, Gerhard A Holzapfel, Paul Steinmann, Ester Comellas, Silvia Budday
{"title":"Model-driven exploration of poro-viscoelasticity in human brain tissue: be careful with the parameters!","authors":"Alexander Greiner, Nina Reiter, Jan Hinrichsen, Manuel P Kainz, Gerhard Sommer, Gerhard A Holzapfel, Paul Steinmann, Ester Comellas, Silvia Budday","doi":"10.1098/rsfs.2024.0026","DOIUrl":null,"url":null,"abstract":"<p><p>The brain is arguably the most complex human organ and modelling its mechanical behaviour has challenged researchers for decades. There is still a lack of understanding on how this multiphase tissue responds to mechanical loading and how material parameters can be reliably calibrated. While previous viscoelastic models with two relaxation times have successfully captured the response of brain tissue, the Theory of Porous Media provides a continuum mechanical framework to explore the underlying physical mechanisms, including interactions between solid matrix and free-flowing interstitial fluid. Following our previously published experimental testing protocol, here we perform finite element simulations of cyclic compression-tension loading and compression-relaxation experiments on human brain white and gray matter specimens. The solid volumetric stress proves to be a crucial factor for the overall biphasic tissue behaviour as it strongly interferes with porous effects controlled by the permeability. An inverse parameter identification reveals that poroelasticity alone is insufficient to capture the time-dependent material behaviour, but a poro-viscoelastic formulation captures the response of brain tissue well. We provide valuable insights into the individual contributions of viscous and porous effects. However, due to the strong coupling between porous, viscous, and volumetric effects, additional experiments are required to reliably determine all material parameters.</p>","PeriodicalId":13795,"journal":{"name":"Interface Focus","volume":"14 6","pages":"20240026"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11620825/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interface Focus","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rsfs.2024.0026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The brain is arguably the most complex human organ and modelling its mechanical behaviour has challenged researchers for decades. There is still a lack of understanding on how this multiphase tissue responds to mechanical loading and how material parameters can be reliably calibrated. While previous viscoelastic models with two relaxation times have successfully captured the response of brain tissue, the Theory of Porous Media provides a continuum mechanical framework to explore the underlying physical mechanisms, including interactions between solid matrix and free-flowing interstitial fluid. Following our previously published experimental testing protocol, here we perform finite element simulations of cyclic compression-tension loading and compression-relaxation experiments on human brain white and gray matter specimens. The solid volumetric stress proves to be a crucial factor for the overall biphasic tissue behaviour as it strongly interferes with porous effects controlled by the permeability. An inverse parameter identification reveals that poroelasticity alone is insufficient to capture the time-dependent material behaviour, but a poro-viscoelastic formulation captures the response of brain tissue well. We provide valuable insights into the individual contributions of viscous and porous effects. However, due to the strong coupling between porous, viscous, and volumetric effects, additional experiments are required to reliably determine all material parameters.
期刊介绍:
Each Interface Focus themed issue is devoted to a particular subject at the interface of the physical and life sciences. Formed of high-quality articles, they aim to facilitate cross-disciplinary research across this traditional divide by acting as a forum accessible to all. Topics may be newly emerging areas of research or dynamic aspects of more established fields. Organisers of each Interface Focus are strongly encouraged to contextualise the journal within their chosen subject.