Regine Slinning, Seth B. Agyei, Silje Hognestad Kristoffersen, F. R. (Ruud) van der Weel, Audrey L. H. van der Meer
{"title":"Out of Sight, Out of Mind? Neuronal Gamma Oscillations During Occlusion Events in Infants","authors":"Regine Slinning, Seth B. Agyei, Silje Hognestad Kristoffersen, F. R. (Ruud) van der Weel, Audrey L. H. van der Meer","doi":"10.1002/dev.70006","DOIUrl":null,"url":null,"abstract":"<p>Object permanence allows infants to interact successfully with objects in the environment. What happens in the human infant brain when objects move in and out of sight? This study used high-density electroencephalography (hdEEG) to record induced oscillatory brain activities in 29 locomotor infants before, during, and after occlusion of a moving object traveling at different speeds. Temporal spectral evolution (TSE) showed that before and after the occlusion event, event-related synchronized (ERS) brain activity was observed, whereas event-related desynchronized (ERD) activity was detected when the car was hidden behind the occluder. Both synchronized and desynchronized brain activities were found in the gamma frequency band (>30 Hz) in visual areas. Coherence connectivity analysis showed significant cluster differences before and during occlusion, during and after occlusion, and before and after occlusion in the gamma (30–150 Hz) and theta range (4–7 Hz) in several brain sources of interest. It was concluded that locomotor infants between 8.5 and 12 months of age show high-frequency brain oscillations while perceiving a moving object going temporarily out of sight. The significant cluster differences indicate the beginning of specialized connectivity networks, where object permanence is processed within dedicated visual, parietal, and central areas along the dorsal processing stream.</p>","PeriodicalId":11086,"journal":{"name":"Developmental psychobiology","volume":"67 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11625696/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental psychobiology","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dev.70006","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Object permanence allows infants to interact successfully with objects in the environment. What happens in the human infant brain when objects move in and out of sight? This study used high-density electroencephalography (hdEEG) to record induced oscillatory brain activities in 29 locomotor infants before, during, and after occlusion of a moving object traveling at different speeds. Temporal spectral evolution (TSE) showed that before and after the occlusion event, event-related synchronized (ERS) brain activity was observed, whereas event-related desynchronized (ERD) activity was detected when the car was hidden behind the occluder. Both synchronized and desynchronized brain activities were found in the gamma frequency band (>30 Hz) in visual areas. Coherence connectivity analysis showed significant cluster differences before and during occlusion, during and after occlusion, and before and after occlusion in the gamma (30–150 Hz) and theta range (4–7 Hz) in several brain sources of interest. It was concluded that locomotor infants between 8.5 and 12 months of age show high-frequency brain oscillations while perceiving a moving object going temporarily out of sight. The significant cluster differences indicate the beginning of specialized connectivity networks, where object permanence is processed within dedicated visual, parietal, and central areas along the dorsal processing stream.
期刊介绍:
Developmental Psychobiology is a peer-reviewed journal that publishes original research papers from the disciplines of psychology, biology, neuroscience, and medicine that contribute to an understanding of behavior development. Research that focuses on development in the embryo/fetus, neonate, juvenile, or adult animal and multidisciplinary research that relates behavioral development to anatomy, physiology, biochemistry, genetics, or evolution is appropriate. The journal represents a broad phylogenetic perspective on behavior development by publishing studies of invertebrates, fish, birds, humans, and other animals. The journal publishes experimental and descriptive studies whether carried out in the laboratory or field.
The journal also publishes review articles and theoretical papers that make important conceptual contributions. Special dedicated issues of Developmental Psychobiology , consisting of invited papers on a topic of general interest, may be arranged with the Editor-in-Chief.
Developmental Psychobiology also publishes Letters to the Editor, which discuss issues of general interest or material published in the journal. Letters discussing published material may correct errors, provide clarification, or offer a different point of view. Authors should consult the editors on the preparation of these contributions.