Activation of the immune deficiency pathway (IMD) reduces the mosquito heart rate via a nitric oxide-based mechanism

IF 2.3 2区 农林科学 Q1 ENTOMOLOGY Journal of insect physiology Pub Date : 2024-12-06 DOI:10.1016/j.jinsphys.2024.104738
Tania Y. Estévez-Lao, Lindsay E. Martin, Julián F. Hillyer
{"title":"Activation of the immune deficiency pathway (IMD) reduces the mosquito heart rate via a nitric oxide-based mechanism","authors":"Tania Y. Estévez-Lao,&nbsp;Lindsay E. Martin,&nbsp;Julián F. Hillyer","doi":"10.1016/j.jinsphys.2024.104738","DOIUrl":null,"url":null,"abstract":"<div><div>The immune deficiency pathway (IMD) is an important component of the antibacterial, antimalarial and antiviral response in mosquitoes. The IMD pathway also drives the infection induced migration of hemocytes to the heart. During an infection, periostial hemocytes kill pathogens in areas of high hemolymph flow and produce nitric oxide that reduces the heart rate. Here, we investigated the consequences of repressing the IMD pathway by silencing the transcription factor, rel2, or activating the pathway by silencing the negative regulator, caspar, in <em>Anopheles gambiae</em>. In uninfected mosquitoes, repression of the IMD pathway does not affect the circulatory system. However, activating the IMD pathway decreases the heart rate, and this correlates with increased transcription and activity of nitric oxide synthase (NOS), but not increased transcription of the lysozymes, LysC1 or LysC2. In infected mosquitoes, however, activation of the IMD pathway does not affect the heart rate but repression of the pathway decreases the heart rate. This latter phenotype correlates with increased transcription and activity of nitric oxide synthase, which is likely due to an increase in infection intensity. In conclusion, we demonstrate that a major immune signaling pathway that regulates periostial hemocyte aggregation, the IMD pathway, reduces the heart rate via a nitric oxide-based mechanism.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"161 ","pages":"Article 104738"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191024001264","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The immune deficiency pathway (IMD) is an important component of the antibacterial, antimalarial and antiviral response in mosquitoes. The IMD pathway also drives the infection induced migration of hemocytes to the heart. During an infection, periostial hemocytes kill pathogens in areas of high hemolymph flow and produce nitric oxide that reduces the heart rate. Here, we investigated the consequences of repressing the IMD pathway by silencing the transcription factor, rel2, or activating the pathway by silencing the negative regulator, caspar, in Anopheles gambiae. In uninfected mosquitoes, repression of the IMD pathway does not affect the circulatory system. However, activating the IMD pathway decreases the heart rate, and this correlates with increased transcription and activity of nitric oxide synthase (NOS), but not increased transcription of the lysozymes, LysC1 or LysC2. In infected mosquitoes, however, activation of the IMD pathway does not affect the heart rate but repression of the pathway decreases the heart rate. This latter phenotype correlates with increased transcription and activity of nitric oxide synthase, which is likely due to an increase in infection intensity. In conclusion, we demonstrate that a major immune signaling pathway that regulates periostial hemocyte aggregation, the IMD pathway, reduces the heart rate via a nitric oxide-based mechanism.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
免疫缺陷途径(IMD)的激活通过一种基于一氧化氮的机制降低蚊子的心率。
免疫缺陷途径(IMD)是蚊子抗菌、抗疟和抗病毒反应的重要组成部分。IMD途径也驱动感染诱导的血细胞向心脏迁移。在感染期间,骨膜血细胞杀死高血淋巴流量区域的病原体,并产生降低心率的一氧化氮。在冈比亚按蚊中,我们研究了通过沉默转录因子rel2或通过沉默负调节因子caspar激活IMD通路来抑制IMD通路的后果。在未感染的蚊子中,抑制IMD途径不影响循环系统。然而,激活IMD通路会降低心率,这与一氧化氮合酶(NOS)的转录和活性增加有关,而与溶菌酶LysC1或LysC2的转录增加无关。然而,在受感染的蚊子中,激活IMD途径不影响心率,但抑制该途径会降低心率。后一种表型与一氧化氮合酶转录和活性的增加相关,这可能是由于感染强度的增加。总之,我们证明了一个主要的免疫信号通路,调节外周血细胞聚集,IMD途径,通过一个基于一氧化氮的机制降低心率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of insect physiology
Journal of insect physiology 生物-昆虫学
CiteScore
4.50
自引率
4.50%
发文量
77
审稿时长
57 days
期刊介绍: All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.
期刊最新文献
Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis Plastic responses in sperm expenditure to sperm competition risk in black soldier fly (Hermetia illucens, Diptera) males Acetylcholine and Malpighian tubules of the kissing bug, Rhodnius prolixus: Evidence for expression of the non-neuronal cholinergic system and a diuretic action of acetylcholine Hemocyanin contributes to embryonic adaptation to hypoxia in the migratory locust Intestinal flow and digestive parameters of Lutzomyia longipalpis larvae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1