Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis

IF 2.3 2区 农林科学 Q1 ENTOMOLOGY Journal of insect physiology Pub Date : 2025-02-09 DOI:10.1016/j.jinsphys.2025.104754
Wenbin Liu , Xinyu Wang , Anmo Zhou , Junyu Zhang , Xinyu Ge , Bernard Moussian , Chuncai Yan , Shaobo Gao , Yiwen Wang
{"title":"Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis","authors":"Wenbin Liu ,&nbsp;Xinyu Wang ,&nbsp;Anmo Zhou ,&nbsp;Junyu Zhang ,&nbsp;Xinyu Ge ,&nbsp;Bernard Moussian ,&nbsp;Chuncai Yan ,&nbsp;Shaobo Gao ,&nbsp;Yiwen Wang","doi":"10.1016/j.jinsphys.2025.104754","DOIUrl":null,"url":null,"abstract":"<div><div>RNA interference (RNAi)-based pest control has emerged as a cutting-edge and highly promising approach in pest control, especially for insect pests, due to its advantages of reduced environmental risk, degradability, and good selectivity. This study provides a bibliometric analysis of RNAi-based pest control, evaluating the global scientific output in this field from the Web of Science Core Collection (WoSCC) and PubMed. From 2007, when the first RNAi-based Arthropod pest control strategy suited for field application was published, to August 2024, 722 English research articles were identified, focusing only on dsRNA delivery modes including feeding, soaking, and spraying, which hold high potential for field application. Articles examining gene function and potential targets by dsRNA injection were excluded. The 722 eligible articles were published in 132 journals by 3112 authors from 563 institutions in fifty countries. Over these 17 years, the number of publications on RNAi-based pest control has shown a trend of accelerating growth. PEST MANAGEMENT SCIENCE published the most articles, followed by PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, SCIENTIFIC REPORTS. China produced most articles, followed by the United States. However, China is significantly behind the United States in developing commercial products in this field. Hot target insects in RNAi-based pest control research included <em>Bemisia tabaci</em>, <em>Helicoverpa armigera</em>, <em>Aphis gossypii</em> Glover, <em>Leptinotarsa decemlineata</em>, and <em>Diabrotica virgifera virgifera</em>. Frequently studied target genes included <em>vATPaseA</em>, <em>CHS1</em>, <em>SNF7</em>, <em>EcR</em> and <em>β-actin</em>, ect. In recent years, various advanced technologies for dsRNA delivery have been developed and utilized in RNAi-based pest control system, including nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries. This study represents the first comprehensive analysis based on bibliometric methods, aiming to investigate the forefront hotspots and research trends of RNAi-based pest control, providing valuable references for researchers and developers in this field.</div></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"161 ","pages":"Article 104754"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191025000083","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA interference (RNAi)-based pest control has emerged as a cutting-edge and highly promising approach in pest control, especially for insect pests, due to its advantages of reduced environmental risk, degradability, and good selectivity. This study provides a bibliometric analysis of RNAi-based pest control, evaluating the global scientific output in this field from the Web of Science Core Collection (WoSCC) and PubMed. From 2007, when the first RNAi-based Arthropod pest control strategy suited for field application was published, to August 2024, 722 English research articles were identified, focusing only on dsRNA delivery modes including feeding, soaking, and spraying, which hold high potential for field application. Articles examining gene function and potential targets by dsRNA injection were excluded. The 722 eligible articles were published in 132 journals by 3112 authors from 563 institutions in fifty countries. Over these 17 years, the number of publications on RNAi-based pest control has shown a trend of accelerating growth. PEST MANAGEMENT SCIENCE published the most articles, followed by PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY, SCIENTIFIC REPORTS. China produced most articles, followed by the United States. However, China is significantly behind the United States in developing commercial products in this field. Hot target insects in RNAi-based pest control research included Bemisia tabaci, Helicoverpa armigera, Aphis gossypii Glover, Leptinotarsa decemlineata, and Diabrotica virgifera virgifera. Frequently studied target genes included vATPaseA, CHS1, SNF7, EcR and β-actin, ect. In recent years, various advanced technologies for dsRNA delivery have been developed and utilized in RNAi-based pest control system, including nanoparticle-enabled, symbiont-mediated, and plant-mediated deliveries. This study represents the first comprehensive analysis based on bibliometric methods, aiming to investigate the forefront hotspots and research trends of RNAi-based pest control, providing valuable references for researchers and developers in this field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of insect physiology
Journal of insect physiology 生物-昆虫学
CiteScore
4.50
自引率
4.50%
发文量
77
审稿时长
57 days
期刊介绍: All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.
期刊最新文献
Trends and emerging hotspots in RNAi-based arthropod pest control: A comprehensive bibliometric analysis Plastic responses in sperm expenditure to sperm competition risk in black soldier fly (Hermetia illucens, Diptera) males Acetylcholine and Malpighian tubules of the kissing bug, Rhodnius prolixus: Evidence for expression of the non-neuronal cholinergic system and a diuretic action of acetylcholine Hemocyanin contributes to embryonic adaptation to hypoxia in the migratory locust Intestinal flow and digestive parameters of Lutzomyia longipalpis larvae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1