FlavorMiner: a machine learning platform for extracting molecular flavor profiles from structural data

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2024-12-10 DOI:10.1186/s13321-024-00935-9
Fabio Herrera-Rocha, Miguel Fernández-Niño, Jorge Duitama, Mónica P. Cala, María José Chica, Ludger A. Wessjohann, Mehdi D. Davari, Andrés Fernando González Barrios
{"title":"FlavorMiner: a machine learning platform for extracting molecular flavor profiles from structural data","authors":"Fabio Herrera-Rocha,&nbsp;Miguel Fernández-Niño,&nbsp;Jorge Duitama,&nbsp;Mónica P. Cala,&nbsp;María José Chica,&nbsp;Ludger A. Wessjohann,&nbsp;Mehdi D. Davari,&nbsp;Andrés Fernando González Barrios","doi":"10.1186/s13321-024-00935-9","DOIUrl":null,"url":null,"abstract":"<div><p>Flavor is the main factor driving consumers acceptance of food products. However, tracking the biochemistry of flavor is a formidable challenge due to the complexity of food composition. Current methodologies for linking individual molecules to flavor in foods and beverages are expensive and time-consuming. Predictive models based on machine learning (ML) are emerging as an alternative to speed up this process. Nonetheless, the optimal approach to predict flavor features of molecules remains elusive. In this work we present FlavorMiner, an ML-based multilabel flavor predictor. FlavorMiner seamlessly integrates different combinations of algorithms and mathematical representations, augmented with class balance strategies to address the inherent class of the input dataset. Notably, Random Forest and K-Nearest Neighbors combined with Extended Connectivity Fingerprint and RDKit molecular descriptors consistently outperform other combinations in most cases. Resampling strategies surpass weight balance methods in mitigating bias associated with class imbalance. FlavorMiner exhibits remarkable accuracy, with an average ROC AUC score of 0.88. This algorithm was used to analyze cocoa metabolomics data, unveiling its profound potential to help extract valuable insights from intricate food metabolomics data. FlavorMiner can be used for flavor mining in any food product, drawing from a diverse training dataset that spans over 934 distinct food products.</p><p><b>Scientific Contribution</b> FlavorMiner is an advanced machine learning (ML)-based tool designed to predict molecular flavor features with high accuracy and efficiency, addressing the complexity of food metabolomics. By leveraging robust algorithmic combinations paired with mathematical representations FlavorMiner achieves high predictive performance. Applied to cocoa metabolomics, FlavorMiner demonstrated its capacity to extract meaningful insights, showcasing its versatility for flavor analysis across diverse food products. This study underscores the transformative potential of ML in accelerating flavor biochemistry research, offering a scalable solution for the food and beverage industry.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00935-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00935-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Flavor is the main factor driving consumers acceptance of food products. However, tracking the biochemistry of flavor is a formidable challenge due to the complexity of food composition. Current methodologies for linking individual molecules to flavor in foods and beverages are expensive and time-consuming. Predictive models based on machine learning (ML) are emerging as an alternative to speed up this process. Nonetheless, the optimal approach to predict flavor features of molecules remains elusive. In this work we present FlavorMiner, an ML-based multilabel flavor predictor. FlavorMiner seamlessly integrates different combinations of algorithms and mathematical representations, augmented with class balance strategies to address the inherent class of the input dataset. Notably, Random Forest and K-Nearest Neighbors combined with Extended Connectivity Fingerprint and RDKit molecular descriptors consistently outperform other combinations in most cases. Resampling strategies surpass weight balance methods in mitigating bias associated with class imbalance. FlavorMiner exhibits remarkable accuracy, with an average ROC AUC score of 0.88. This algorithm was used to analyze cocoa metabolomics data, unveiling its profound potential to help extract valuable insights from intricate food metabolomics data. FlavorMiner can be used for flavor mining in any food product, drawing from a diverse training dataset that spans over 934 distinct food products.

Scientific Contribution FlavorMiner is an advanced machine learning (ML)-based tool designed to predict molecular flavor features with high accuracy and efficiency, addressing the complexity of food metabolomics. By leveraging robust algorithmic combinations paired with mathematical representations FlavorMiner achieves high predictive performance. Applied to cocoa metabolomics, FlavorMiner demonstrated its capacity to extract meaningful insights, showcasing its versatility for flavor analysis across diverse food products. This study underscores the transformative potential of ML in accelerating flavor biochemistry research, offering a scalable solution for the food and beverage industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风味是促使消费者接受食品的主要因素。然而,由于食品成分的复杂性,跟踪风味的生物化学过程是一项艰巨的挑战。目前将单个分子与食品和饮料风味联系起来的方法既昂贵又耗时。基于机器学习(ML)的预测模型正在成为加快这一过程的替代方法。尽管如此,预测分子风味特征的最佳方法仍然难以捉摸。在这项工作中,我们介绍了基于 ML 的多标签风味预测器 FlavorMiner。FlavorMiner 无缝集成了不同的算法组合和数学表示法,并采用类平衡策略来解决输入数据集的固有类别问题。值得注意的是,在大多数情况下,随机森林和 K-近邻与扩展连接指纹和 RDKit 分子描述符的组合始终优于其他组合。在减轻与类不平衡相关的偏差方面,重采样策略超过了权重平衡方法。FlavorMiner 的准确度非常高,平均 ROC AUC 得分为 0.88。该算法被用于分析可可代谢组学数据,揭示了其帮助从复杂的食品代谢组学数据中提取有价值见解的巨大潜力。FlavorMiner 可用于任何食品的风味挖掘,其训练数据集跨越 934 种不同的食品。科学贡献 FlavorMiner 是一种基于机器学习 (ML) 的先进工具,旨在高精度、高效率地预测分子风味特征,解决食品代谢组学的复杂性问题。通过利用强大的算法组合和数学表示,FlavorMiner 实现了高预测性能。FlavorMiner 在可可代谢组学中的应用证明了它有能力提取有意义的见解,展示了它在各种食品风味分析方面的多功能性。这项研究强调了 ML 在加速风味生物化学研究方面的变革潜力,为食品和饮料行业提供了一个可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
Interface-aware molecular generative framework for protein–protein interaction modulators MolNexTR: a generalized deep learning model for molecular image recognition FlavorMiner: a machine learning platform for extracting molecular flavor profiles from structural data Be aware of overfitting by hyperparameter optimization! Human-in-the-loop active learning for goal-oriented molecule generation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1