Pretraining graph transformers with atom-in-a-molecule quantum properties for improved ADMET modeling

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-02-27 DOI:10.1186/s13321-025-00970-0
Alessio Fallani, Ramil Nugmanov, Jose Arjona-Medina, Jörg Kurt Wegner, Alexandre Tkatchenko, Kostiantyn Chernichenko
{"title":"Pretraining graph transformers with atom-in-a-molecule quantum properties for improved ADMET modeling","authors":"Alessio Fallani,&nbsp;Ramil Nugmanov,&nbsp;Jose Arjona-Medina,&nbsp;Jörg Kurt Wegner,&nbsp;Alexandre Tkatchenko,&nbsp;Kostiantyn Chernichenko","doi":"10.1186/s13321-025-00970-0","DOIUrl":null,"url":null,"abstract":"<div><p>We evaluate the impact of pretraining Graph Transformer architectures on atom-level quantum-mechanical features for the modeling of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like compounds. We compare this pretraining strategy with two others: one based on molecular quantum properties (specifically the HOMO-LUMO gap) and one using a self-supervised atom masking technique. After fine-tuning on Therapeutic Data Commons ADMET datasets, we evaluate the performance improvement in the different models observing that models pretrained with atomic quantum mechanical properties produce in general better results. We then analyze the latent representations and observe that the supervised strategies preserve the pretraining information after fine-tuning and that different pretrainings produce different trends in latent expressivity across layers. Furthermore, we find that models pretrained on atomic quantum mechanical properties capture more low-frequency Laplacian eigenmodes of the input graph via the attention weights and produce better representations of atomic environments within the molecule. Application of the analysis to a much larger non-public dataset for microsomal clearance illustrates generalizability of the studied indicators. In this case the performances of the models are in accordance with the representation analysis and highlight, especially for the case of masking pretraining and atom-level quantum property pretraining, how model types with similar performance on public benchmarks can have different performances on large scale pharmaceutical data.</p><p><b>Scientific contribution</b></p><p>We systematically compared three different data type/methodologies for pretraining molecular Graphormer with the purpose of modeling ADMET properties as downstream tasks. The learned representations from differently pretrained models were analyzed in addition to comparison of downstream task performances that have been typically reported in similar works. Such examination methodologies, including a newly introduced analysis of Graphormer’s Attention Rollout Matrix, can guide pretraining strategy selection, as corroborated by a performance evaluation on a larger internal dataset.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00970-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00970-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We evaluate the impact of pretraining Graph Transformer architectures on atom-level quantum-mechanical features for the modeling of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of drug-like compounds. We compare this pretraining strategy with two others: one based on molecular quantum properties (specifically the HOMO-LUMO gap) and one using a self-supervised atom masking technique. After fine-tuning on Therapeutic Data Commons ADMET datasets, we evaluate the performance improvement in the different models observing that models pretrained with atomic quantum mechanical properties produce in general better results. We then analyze the latent representations and observe that the supervised strategies preserve the pretraining information after fine-tuning and that different pretrainings produce different trends in latent expressivity across layers. Furthermore, we find that models pretrained on atomic quantum mechanical properties capture more low-frequency Laplacian eigenmodes of the input graph via the attention weights and produce better representations of atomic environments within the molecule. Application of the analysis to a much larger non-public dataset for microsomal clearance illustrates generalizability of the studied indicators. In this case the performances of the models are in accordance with the representation analysis and highlight, especially for the case of masking pretraining and atom-level quantum property pretraining, how model types with similar performance on public benchmarks can have different performances on large scale pharmaceutical data.

Scientific contribution

We systematically compared three different data type/methodologies for pretraining molecular Graphormer with the purpose of modeling ADMET properties as downstream tasks. The learned representations from differently pretrained models were analyzed in addition to comparison of downstream task performances that have been typically reported in similar works. Such examination methodologies, including a newly introduced analysis of Graphormer’s Attention Rollout Matrix, can guide pretraining strategy selection, as corroborated by a performance evaluation on a larger internal dataset.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability Achieving well-informed decision-making in drug discovery: a comprehensive calibration study using neural network-based structure-activity models GNINA 1.3: the next increment in molecular docking with deep learning Syn-MolOpt: a synthesis planning-driven molecular optimization method using data-derived functional reaction templates Pretraining graph transformers with atom-in-a-molecule quantum properties for improved ADMET modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1