GNINA 1.3: the next increment in molecular docking with deep learning

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-03-02 DOI:10.1186/s13321-025-00973-x
Andrew T. McNutt, Yanjing Li, Rocco Meli, Rishal Aggarwal, David Ryan Koes
{"title":"GNINA 1.3: the next increment in molecular docking with deep learning","authors":"Andrew T. McNutt,&nbsp;Yanjing Li,&nbsp;Rocco Meli,&nbsp;Rishal Aggarwal,&nbsp;David Ryan Koes","doi":"10.1186/s13321-025-00973-x","DOIUrl":null,"url":null,"abstract":"<div><p>Computer-aided drug design has the potential to significantly reduce the astronomical costs of drug development, and molecular docking plays a prominent role in this process. Molecular docking is an <i>in silico</i> technique that predicts the bound 3D conformations of two molecules, a necessary step for other structure-based methods. Here, we describe version 1.3 of the open-source molecular docking software <span>Gnina</span>. This release updates the underlying deep learning framework to PyTorch, resulting in more computationally efficient docking and paving the way for seamless integration of other deep learning methods into the docking pipeline. We retrained our CNN scoring functions on the updated CrossDocked2020 v1.3 dataset and introduce knowledge-distilled CNN scoring functions to facilitate high-throughput virtual screening with <span>Gnina</span>. Furthermore, we add functionality for covalent docking, where an atom of the ligand is covalently bound to an atom of the receptor. This update expands the scope of docking with <span>Gnina</span> and further positions <span>Gnina</span> as a user-friendly, open-source molecular docking framework. <span>Gnina</span> is available at https://github.com/gnina/gnina.</p><p><b>Scientific contributions</b>: GNINA 1.3 is an open source a molecular docking tool with enhanced support for covalent docking and updated deep learning models for more effective docking and screening.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00973-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00973-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Computer-aided drug design has the potential to significantly reduce the astronomical costs of drug development, and molecular docking plays a prominent role in this process. Molecular docking is an in silico technique that predicts the bound 3D conformations of two molecules, a necessary step for other structure-based methods. Here, we describe version 1.3 of the open-source molecular docking software Gnina. This release updates the underlying deep learning framework to PyTorch, resulting in more computationally efficient docking and paving the way for seamless integration of other deep learning methods into the docking pipeline. We retrained our CNN scoring functions on the updated CrossDocked2020 v1.3 dataset and introduce knowledge-distilled CNN scoring functions to facilitate high-throughput virtual screening with Gnina. Furthermore, we add functionality for covalent docking, where an atom of the ligand is covalently bound to an atom of the receptor. This update expands the scope of docking with Gnina and further positions Gnina as a user-friendly, open-source molecular docking framework. Gnina is available at https://github.com/gnina/gnina.

Scientific contributions: GNINA 1.3 is an open source a molecular docking tool with enhanced support for covalent docking and updated deep learning models for more effective docking and screening.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
计算机辅助药物设计有可能大大降低药物开发的天文数字般的成本,而分子对接在这一过程中发挥着重要作用。分子对接是一种预测两个分子结合三维构象的硅学技术,是其他基于结构的方法的必要步骤。在此,我们介绍开源分子对接软件 Gnina 的 1.3 版本。该版本将底层深度学习框架更新为 PyTorch,从而提高了对接的计算效率,并为将其他深度学习方法无缝集成到对接管道中铺平了道路。我们在更新后的 CrossDocked2020 v1.3 数据集上重新训练了 CNN 评分函数,并引入了经过知识提炼的 CNN 评分函数,以促进使用 Gnina 进行高通量虚拟筛选。此外,我们还增加了共价对接功能,即配体原子与受体原子共价结合。这次更新扩大了 Gnina 的对接范围,并进一步将 Gnina 定位为用户友好型开源分子对接框架。Gnina 可通过 https://github.com/gnina/gnina.Scientific 捐款获得:GNINA 1.3 是一款开源的分子对接工具,增强了对共价对接的支持,并更新了深度学习模型,以实现更有效的对接和筛选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
CardioGenAI: a machine learning-based framework for re-engineering drugs for reduced hERG liability Achieving well-informed decision-making in drug discovery: a comprehensive calibration study using neural network-based structure-activity models GNINA 1.3: the next increment in molecular docking with deep learning Syn-MolOpt: a synthesis planning-driven molecular optimization method using data-derived functional reaction templates Pretraining graph transformers with atom-in-a-molecule quantum properties for improved ADMET modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1