A K‐Net‐based deep learning framework for automatic rock quality designation estimation

IF 8.5 1区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer-Aided Civil and Infrastructure Engineering Pub Date : 2024-12-10 DOI:10.1111/mice.13386
Sihao Yu, Louis Ngai Yuen Wong
{"title":"A K‐Net‐based deep learning framework for automatic rock quality designation estimation","authors":"Sihao Yu, Louis Ngai Yuen Wong","doi":"10.1111/mice.13386","DOIUrl":null,"url":null,"abstract":"Rock quality designation (RQD) plays a crucial role in the design and analysis of rock engineering. The traditional method of measuring RQD relies on manual logging by geologists, which is often labor‐intensive and time‐consuming. Thus, this study presents an autonomous framework for expeditious RQD estimation based on two‐dimensional corebox photographs. The scale‐invariant feature transform (SIFT) algorithm is employed for rapid image calibration. A K‐Net‐based model with dynamic semantic kernels, conditional on their actual activations, is proposed for rock core segmentation. It surpasses other prevalent models with a mean intersection over union of 95.43%. The automatic RQD estimation error of our proposed framework is only 1.46% compared to manual logging results, demonstrating its exceptional reliability and effectiveness. The robustness of the framework is then validated on an additional test set, proving its potential for widespread adoption in geotechnical engineering practice.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"95 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13386","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Rock quality designation (RQD) plays a crucial role in the design and analysis of rock engineering. The traditional method of measuring RQD relies on manual logging by geologists, which is often labor‐intensive and time‐consuming. Thus, this study presents an autonomous framework for expeditious RQD estimation based on two‐dimensional corebox photographs. The scale‐invariant feature transform (SIFT) algorithm is employed for rapid image calibration. A K‐Net‐based model with dynamic semantic kernels, conditional on their actual activations, is proposed for rock core segmentation. It surpasses other prevalent models with a mean intersection over union of 95.43%. The automatic RQD estimation error of our proposed framework is only 1.46% compared to manual logging results, demonstrating its exceptional reliability and effectiveness. The robustness of the framework is then validated on an additional test set, proving its potential for widespread adoption in geotechnical engineering practice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于K - Net的深度学习框架,用于岩石质量自动评价
岩石质量设计在岩石工程设计和分析中起着至关重要的作用。测量RQD的传统方法依赖于地质学家的手工测井,这通常是劳动密集型和耗时的。因此,本研究提出了一个基于二维核盒照片的快速RQD估计的自主框架。采用尺度不变特征变换(SIFT)算法对图像进行快速标定。提出了一种基于K - Net的动态语义核模型,该模型以其实际激活为条件,用于岩心分割。它优于其他流行的模型,平均交点优于并集的95.43%。与手工记录结果相比,我们提出的框架的自动RQD估计误差仅为1.46%,证明了其卓越的可靠性和有效性。然后在另一个测试集上验证了框架的鲁棒性,证明了其在岩土工程实践中广泛采用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.60
自引率
19.80%
发文量
146
审稿时长
1 months
期刊介绍: Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms. Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.
期刊最新文献
Issue Information The expressway network design problem for multiple urban subregions based on the macroscopic fundamental diagram Cover Image, Volume 40, Issue 5 Automated corrosion surface quantification in steel transmission towers using UAV photogrammetry and deep convolutional neural networks Autonomous construction framework for crane control with enhanced soft actor–critic algorithm and real-time progress monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1