MdHY5 positively regulates cold tolerance in apple by integrating the auxin and abscisic acid pathways

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-12-10 DOI:10.1111/nph.20333
Xiaomin Liu, Jiangtong Wei, Sujuan Li, Jiang Li, Huifang Cao, Dong Huang, Danni Zhang, Zhijun Zhang, Tengteng Gao, Ying Zhang, Fengwang Ma, Chao Li
{"title":"MdHY5 positively regulates cold tolerance in apple by integrating the auxin and abscisic acid pathways","authors":"Xiaomin Liu, Jiangtong Wei, Sujuan Li, Jiang Li, Huifang Cao, Dong Huang, Danni Zhang, Zhijun Zhang, Tengteng Gao, Ying Zhang, Fengwang Ma, Chao Li","doi":"10.1111/nph.20333","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Low-temperature stress causes various types of physiological and biochemical damage to plants. The basic leucine zipper (bZIP) family transcription factor HY5 plays a significant role in multiple stress responses in plants.</li>\n<li>Here, cold stress was found to induce the upregulation of <i>MdHY5</i> expression, which, in turn, positively regulates the cold tolerance of apple (<i>Malus domestica</i>). MdHY5 directly interacts the promoters of <i>MdGH3-2/12</i> (auxin-amido synthetase) and inhibits their expression. However, low-temperature stress inhibits the regulation of <i>MdGH3-2/12</i> by MdHY5, which suppresses the increase in indole-3-acetic acid (IAA) mediated by the MdHY5-<i>MdGH3-2/12</i> module.</li>\n<li>Alternatively, MdHY5 directly interacts with the promoter of <i>MdNCED2</i>, a crucial enzyme in the biosynthesis of abscisic acid (ABA), thereby activating its expression. Additionally, cold stress enhances the regulation of <i>MdNCED2</i> by MdHY5, which leads to the promotion of the increase in ABA mediated by the MdHY5-<i>MdNCED2</i> module. Therefore, under low-temperature stress, MdHY5 reduces the ratio of IAA : ABA within apple plants by regulating <i>MdGH3-2/12</i> and <i>MdNCED2</i>, thereby indirectly promoting the accumulation of anthocyanins, which further improves the cold tolerance of apple.</li>\n<li>This study establishes a theoretical framework for the multiple roles and regulatory mechanisms of HY5 in integrating the IAA and ABA pathways under cold stress.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"200 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20333","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • Low-temperature stress causes various types of physiological and biochemical damage to plants. The basic leucine zipper (bZIP) family transcription factor HY5 plays a significant role in multiple stress responses in plants.
  • Here, cold stress was found to induce the upregulation of MdHY5 expression, which, in turn, positively regulates the cold tolerance of apple (Malus domestica). MdHY5 directly interacts the promoters of MdGH3-2/12 (auxin-amido synthetase) and inhibits their expression. However, low-temperature stress inhibits the regulation of MdGH3-2/12 by MdHY5, which suppresses the increase in indole-3-acetic acid (IAA) mediated by the MdHY5-MdGH3-2/12 module.
  • Alternatively, MdHY5 directly interacts with the promoter of MdNCED2, a crucial enzyme in the biosynthesis of abscisic acid (ABA), thereby activating its expression. Additionally, cold stress enhances the regulation of MdNCED2 by MdHY5, which leads to the promotion of the increase in ABA mediated by the MdHY5-MdNCED2 module. Therefore, under low-temperature stress, MdHY5 reduces the ratio of IAA : ABA within apple plants by regulating MdGH3-2/12 and MdNCED2, thereby indirectly promoting the accumulation of anthocyanins, which further improves the cold tolerance of apple.
  • This study establishes a theoretical framework for the multiple roles and regulatory mechanisms of HY5 in integrating the IAA and ABA pathways under cold stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MdHY5 通过整合辅助素和脱落酸途径积极调节苹果的耐寒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Insights into the subdaily variations in methane, nitrous oxide and carbon dioxide fluxes from upland tropical tree stems Two reductases complete steroidal glycoalkaloids biosynthesis in potato Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum At least two functions for BdMUTE during the development of stomatal complexes in Brachypodium distachyon MEDIATOR15 destabilizes DELLA protein to promote gibberellin‐mediated plant development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1