Electrokinetic microdevices for biological sample processing

Gloria Porro, Till Ryser, Pierre-Emmanuel Thiriet, Micaela Siria Cristofori, Carlotta Guiducci
{"title":"Electrokinetic microdevices for biological sample processing","authors":"Gloria Porro, Till Ryser, Pierre-Emmanuel Thiriet, Micaela Siria Cristofori, Carlotta Guiducci","doi":"10.1038/s44287-024-00099-6","DOIUrl":null,"url":null,"abstract":"Microsystems combining fluid dynamics and electric-field-induced forces have emerged as powerful tools for manipulating and isolating biological species. Advances in electrokinetic theory, combined with optimized microfabrication processes, are at the core of the development of high-throughput devices capable of directly handling unprocessed samples and seamlessly integrating analytical functions. Electrokinetic technologies can manipulate bioparticles ranging from a few nanometres to tens of micrometres, achieving throughputs of up to 106 particles per second, comparable to other state-of-the-art techniques. This Review starts by presenting the fundamentals of physical phenomena underlying the generation of electrokinetic forces applied to biological particles. We then provide an overview of existing technologies, with a focus on key factors influencing the development of new electrokinetic microdevices. Lastly, we delve into the unique challenges associated with translating these integrated microsystems into commercial systems, and we highlight the opportunities, future research directions and applications in the fields of in vitro diagnostics and healthcare. Advances in electrokinetics enable high-throughput microsystems integrating fluid dynamics and electric field forces to manipulate bioparticles. This Review covers fundamental phenomena, existing technologies, challenges and future directions in the development of electrokinetic microdevices for diagnostics and healthcare.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 12","pages":"768-787"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44287-024-00099-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00099-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microsystems combining fluid dynamics and electric-field-induced forces have emerged as powerful tools for manipulating and isolating biological species. Advances in electrokinetic theory, combined with optimized microfabrication processes, are at the core of the development of high-throughput devices capable of directly handling unprocessed samples and seamlessly integrating analytical functions. Electrokinetic technologies can manipulate bioparticles ranging from a few nanometres to tens of micrometres, achieving throughputs of up to 106 particles per second, comparable to other state-of-the-art techniques. This Review starts by presenting the fundamentals of physical phenomena underlying the generation of electrokinetic forces applied to biological particles. We then provide an overview of existing technologies, with a focus on key factors influencing the development of new electrokinetic microdevices. Lastly, we delve into the unique challenges associated with translating these integrated microsystems into commercial systems, and we highlight the opportunities, future research directions and applications in the fields of in vitro diagnostics and healthcare. Advances in electrokinetics enable high-throughput microsystems integrating fluid dynamics and electric field forces to manipulate bioparticles. This Review covers fundamental phenomena, existing technologies, challenges and future directions in the development of electrokinetic microdevices for diagnostics and healthcare.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物样品处理用电动微型装置
结合流体动力学和电场感应力的微系统已经成为操纵和隔离生物物种的有力工具。电动力学理论的进步,结合优化的微加工工艺,是开发能够直接处理未处理样品并无缝集成分析功能的高通量设备的核心。电动技术可以操纵从几纳米到几十微米的生物颗粒,达到每秒106个颗粒的吞吐量,与其他最先进的技术相当。本综述首先介绍了应用于生物粒子的电动势产生的物理现象的基本原理。然后,我们提供了现有技术的概述,重点是影响新电动微器件发展的关键因素。最后,我们深入探讨了将这些集成微系统转化为商业系统所面临的独特挑战,并强调了在体外诊断和医疗保健领域的机遇、未来的研究方向和应用。电动力学的进步使集成流体动力学和电场力的高通量微系统能够操纵生物颗粒。本文综述了用于诊断和医疗保健的电动微型设备的基本现象、现有技术、挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reconfigurable metastructure for wave-based matrix maths Boron nitride for applications in microelectronics Micro air vehicles with bird-like navigation speed and safety Biomimetic electroactive materials and devices for regenerative engineering Standardizing structure design of soft robots through origami
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1