Jinyong Park, Minhi Han, Kiwoong Lee, Sungnam Park
{"title":"Hierarchical Graph Attention Network with Positive and Negative Attentions for Improved Interpretability: ISA-PN.","authors":"Jinyong Park, Minhi Han, Kiwoong Lee, Sungnam Park","doi":"10.1021/acs.jcim.4c01035","DOIUrl":null,"url":null,"abstract":"<p><p>With the advancement of deep learning (DL) methods in chemistry and materials science, the interpretability of DL models has become a critical issue in elucidating quantitative (molecular) structure-property relationships. Although attention mechanisms have been generally employed to explain the importance of molecular substructures that contribute to molecular properties, their interpretability remains limited. In this work, we introduce a versatile segmentation method and develop an interpretable subgraph attention (ISA) network with positive and negative streams (ISA-PN) to enhance the understanding of molecular structure-property relationships. The predictive performance of the ISA models was validated using data sets for aqueous solubility, lipophilicity, and melting temperature, with a particular focus on evaluating interpretability for the aqueous solubility data set. The ISA-PN model enables the quantification of the contributions of molecular substructures through positive and negative attention scores. Comparative analyses of the ISA, ISA-PN, and GC-Net (group contribution network) models demonstrate that the ISA-PN model significantly improves interpretability while maintaining similar accuracy levels. This study highlights the efficacy of the ISA-PN model in providing meaningful insights into the contributions of molecular substructures to molecular properties, thereby enhancing the interpretability of DL models in chemical applications.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01035","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the advancement of deep learning (DL) methods in chemistry and materials science, the interpretability of DL models has become a critical issue in elucidating quantitative (molecular) structure-property relationships. Although attention mechanisms have been generally employed to explain the importance of molecular substructures that contribute to molecular properties, their interpretability remains limited. In this work, we introduce a versatile segmentation method and develop an interpretable subgraph attention (ISA) network with positive and negative streams (ISA-PN) to enhance the understanding of molecular structure-property relationships. The predictive performance of the ISA models was validated using data sets for aqueous solubility, lipophilicity, and melting temperature, with a particular focus on evaluating interpretability for the aqueous solubility data set. The ISA-PN model enables the quantification of the contributions of molecular substructures through positive and negative attention scores. Comparative analyses of the ISA, ISA-PN, and GC-Net (group contribution network) models demonstrate that the ISA-PN model significantly improves interpretability while maintaining similar accuracy levels. This study highlights the efficacy of the ISA-PN model in providing meaningful insights into the contributions of molecular substructures to molecular properties, thereby enhancing the interpretability of DL models in chemical applications.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.