Mostafa A Elfawal, Emily Goetz, Youmie Kim, Paulina Chen, Sergey N Savinov, Leonard Barasa, Paul R Thompson, Raffi V Aroian
{"title":"High-Throughput Screening of More Than 30,000 Compounds for Anthelmintics against Gastrointestinal Nematode Parasites.","authors":"Mostafa A Elfawal, Emily Goetz, Youmie Kim, Paulina Chen, Sergey N Savinov, Leonard Barasa, Paul R Thompson, Raffi V Aroian","doi":"10.1021/acsinfecdis.4c00327","DOIUrl":null,"url":null,"abstract":"<p><p>Gastrointestinal nematodes (GINs) are among the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms (<i>Ancylostoma ceylanicum</i>) and whipworms (<i>Trichuris muris</i>). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly active anthelmintics.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00327","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gastrointestinal nematodes (GINs) are among the most common parasites of humans, livestock, and companion animals. GIN parasites infect 1-2 billion people worldwide, significantly impacting hundreds of millions of children, pregnant women, and adult workers, thereby perpetuating poverty. Two benzimidazoles with suboptimal efficacy are currently used to treat GINs in humans as part of mass drug administrations, with many instances of lower-than-expected or poor efficacy and possible resistance. Thus, new anthelmintics are urgently needed. However, screening methods for new anthelmintics using human GINs typically have low throughput. Here, using our novel screening pipeline that starts with human hookworms, we screened 30,238 unique small molecules from a wide range of compound libraries, including ones with generic diversity, repurposed drugs, natural derivatives, known mechanisms of action, as well as multiple target-focused libraries (e.g., targeting kinases, GPCRs, and neuronal proteins). We identified 55 compounds with broad-spectrum activity against adult stages of two evolutionary divergent GINs, hookworms (Ancylostoma ceylanicum) and whipworms (Trichuris muris). Based on known databases, the targets of these 55 compounds were predicted in nematode parasites. One novel scaffold from the diversity set library, F0317-0202, showed good activity (high motility inhibition) against both GINs. To better understand this novel scaffold's structure-activity relationships (SAR), we screened 28 analogs and created SAR models highlighting chemical and functional groups required for broad-spectrum activity. These studies validate our new and efficient screening pipeline at the level of tens of thousands of compounds and provide an important set of new GIN-active compounds for developing novel and broadly active anthelmintics.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.