Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity.

IF 4 2区 医学 Q2 CHEMISTRY, MEDICINAL ACS Infectious Diseases Pub Date : 2025-01-14 DOI:10.1021/acsinfecdis.4c01001
Emily K Bremers, Joshua H Butler, Leticia S Do Amaral, Emilio F Merino, Hanan Almolhim, Bo Zhou, Rodrigo P Baptista, Maxim Totrov, Paul R Carlier, Maria Belen Cassera
{"title":"Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity.","authors":"Emily K Bremers, Joshua H Butler, Leticia S Do Amaral, Emilio F Merino, Hanan Almolhim, Bo Zhou, Rodrigo P Baptista, Maxim Totrov, Paul R Carlier, Maria Belen Cassera","doi":"10.1021/acsinfecdis.4c01001","DOIUrl":null,"url":null,"abstract":"<p><p>Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus <i>Plasmodium</i>. Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in <i>Plasmodium falciparum</i>. Through <i>in vitro</i> selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c01001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus Plasmodium. Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in Plasmodium falciparum. Through in vitro selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
世界上有一半人口面临感染疟疾的风险,疟疾是由疟原虫引起的。目前,所有临床上可用的抗疟药物都出现了抗药性,因此迫切需要开发新型化合物,并更好地了解常见的抗药性机制。我们之前发现了一种新型四氢-β-咔啉化合物 PRC1590,它能有效杀死疟原虫。为了更好地了解它的作用机制,我们在恶性疟原虫中选择并鉴定了对 PRC1590 的抗药性。通过体外选择对 PRC1590 的抗药性,我们发现寄生虫多药抗性蛋白 1(PfMDR1 G293V)上的单核苷酸多态性介导了对 PRC1590 的抗药性。这种突变导致立体特异性抗药性,并使寄生虫对其他抗疟药(如甲氟喹、奎宁和 MMV019017)敏感。红细胞内无性阶段特异性测定显示,当寄生虫形成单个消化泡(DV)并积极消化血红蛋白时,PRC1590 在滋养体阶段的作用最强。此外,荧光显微镜显示 PRC1590 破坏了 DV 的功能,这表明该细胞器具有潜在的分子靶标。我们的研究结果标志着我们在了解抗药性机制和这类新兴抗疟药物的作用模式方面迈出了重要一步。此外,我们的研究结果还表明,PfMDR1介导的抗药性与PRC1590的分子靶点之间存在潜在联系。这项研究强调了未来研究的迫切性,即研究化合物的化学支架、分子靶点和与 PfMDR1 相关的抗性突变之间的复杂关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Infectious Diseases
ACS Infectious Diseases CHEMISTRY, MEDICINALINFECTIOUS DISEASES&nb-INFECTIOUS DISEASES
CiteScore
9.70
自引率
3.80%
发文量
213
期刊介绍: ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to: * Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials. * Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets. * Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance. * Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents. * Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota. * Small molecule vaccine adjuvants for infectious disease. * Viral and bacterial biochemistry and molecular biology.
期刊最新文献
Potential of Mycobacterium tuberculosis Type II NADH-Dehydrogenase in Antitubercular Drug Discovery. Evaluation of Synthetic Peptides from Schistosoma mansoni ATP Diphosphohydrolase 1: In Silico Approaches for Characterization and Prospective Application in Diagnosis of Schistosomiasis. Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity. Unfolding the Potential of Pyrrole- and Indole-Based Allylidene Hydrazine Carboximidamides as Antimicrobial Agents. d-[5-11C]-Glutamine Positron Emission Tomography Imaging for Diagnosis and Therapeutic Monitoring of Orthopedic Implant Infections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1