Simulating Genetic Mixing in Strongly Structured Populations of the Threatened Southern Brown Bandicoot (Isoodon obesulus)

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY Evolutionary Applications Pub Date : 2024-12-05 DOI:10.1111/eva.70050
John G. Black, Steven J. B. Cooper, Thomas L. Schmidt, Andrew R. Weeks
{"title":"Simulating Genetic Mixing in Strongly Structured Populations of the Threatened Southern Brown Bandicoot (Isoodon obesulus)","authors":"John G. Black,&nbsp;Steven J. B. Cooper,&nbsp;Thomas L. Schmidt,&nbsp;Andrew R. Weeks","doi":"10.1111/eva.70050","DOIUrl":null,"url":null,"abstract":"<p>Genetic mixing aims to increase the genetic diversity of small or isolated populations, by mitigating genetic drift and inbreeding depression, either by maximally increasing genetic diversity, or minimising the prevalence of recessive, deleterious alleles. However, few studies investigate this beyond a single generation of mixing. Here, we model genetic mixing using captive, low-diversity recipient population of the threatened Southern brown bandicoot (<i>Isoodon obesulus</i>) over 50 generations and compare wild populations across south-eastern Australia as candidate source populations. We first assess genetic differentiation between 12 populations, including the first genomic assessment of three mainland Australian and three Tasmanian populations. We assess genetic diversity in the 12 populations using an individualised autosomal heterozygosity pipeline, using these results to identify a candidate recipient population for genetic mixing simulations. We found that populations fell into four major groups of genetic similarity: Adelaide Hills, western Victoria, eastern Victoria, and Tasmania, but populations within these groups were also distinct, and additional substructure was observed in some populations. Our autosomal heterozygosity pipeline indicated significant variability in mean heterozygosity between populations, identifying one extremely genetically degraded population on Inner Sister Island, Tasmania. Genetic mixing simulations of a low heterozygosity captive population in Victoria suggested the greatest increase in heterozygosity would be reached by using highly differentiated populations as mixing sources. However, when removing populations that may represent taxonomically discrete lineages, neither metrics of differentiation nor heterozygosity was strongly correlated with modelled heterozygosity increase, indicating the value of simulation-based approaches when selecting source populations for population mixing.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11621039/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70050","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic mixing aims to increase the genetic diversity of small or isolated populations, by mitigating genetic drift and inbreeding depression, either by maximally increasing genetic diversity, or minimising the prevalence of recessive, deleterious alleles. However, few studies investigate this beyond a single generation of mixing. Here, we model genetic mixing using captive, low-diversity recipient population of the threatened Southern brown bandicoot (Isoodon obesulus) over 50 generations and compare wild populations across south-eastern Australia as candidate source populations. We first assess genetic differentiation between 12 populations, including the first genomic assessment of three mainland Australian and three Tasmanian populations. We assess genetic diversity in the 12 populations using an individualised autosomal heterozygosity pipeline, using these results to identify a candidate recipient population for genetic mixing simulations. We found that populations fell into four major groups of genetic similarity: Adelaide Hills, western Victoria, eastern Victoria, and Tasmania, but populations within these groups were also distinct, and additional substructure was observed in some populations. Our autosomal heterozygosity pipeline indicated significant variability in mean heterozygosity between populations, identifying one extremely genetically degraded population on Inner Sister Island, Tasmania. Genetic mixing simulations of a low heterozygosity captive population in Victoria suggested the greatest increase in heterozygosity would be reached by using highly differentiated populations as mixing sources. However, when removing populations that may represent taxonomically discrete lineages, neither metrics of differentiation nor heterozygosity was strongly correlated with modelled heterozygosity increase, indicating the value of simulation-based approaches when selecting source populations for population mixing.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
濒危南方褐土鼬(Isoodon obesulus)强结构种群的遗传混合模拟。
遗传混合旨在通过最大限度地增加遗传多样性或最小化隐性有害等位基因的流行,从而减轻遗传漂变和近交抑制,从而增加小种群或孤立种群的遗传多样性。然而,很少有研究超越单一世代的混合。在这里,我们使用受威胁的南方褐土鼬(Isoodon obesulus)的圈养低多样性受体种群进行遗传混合模型,并将澳大利亚东南部的野生种群作为候选源种群进行比较。我们首先评估了12个种群之间的遗传分化,包括三个澳大利亚大陆种群和三个塔斯马尼亚种群的首次基因组评估。我们使用个体化常染色体杂合性管道评估12个群体的遗传多样性,利用这些结果确定遗传混合模拟的候选受体群体。在遗传相似性方面,种群可分为阿德莱德山、西维多利亚、东维多利亚和塔斯马尼亚4个主要类群,但类群内的种群也存在差异,部分种群还存在额外的亚结构。我们的常染色体杂合性管道显示了种群间平均杂合性的显著差异,确定了塔斯马尼亚州内姐妹岛一个遗传极度退化的种群。对维多利亚州低杂合度圈养种群的遗传混合模拟表明,使用高度分化的种群作为混合源,杂合度将得到最大的提高。然而,当去除可能代表分类学上离散谱系的群体时,分化指标和杂合度都与模型的杂合度增加没有很强的相关性,这表明基于模拟的方法在选择群体混合源群体时的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
期刊最新文献
Issue Information Genetic Architecture Underlying Response to the Fungal Pathogen Dothistroma septosporum in Lodgepole Pine, Jack Pine, and Their Hybrids Genomic Monitoring of a Reintroduced Butterfly Uncovers Contrasting Founder Lineage Survival Fine-Scale Variation in Soil Properties Promotes Local Taxonomic Diversity of Hybridizing Oak Species (Quercus spp.) Climate-Associated Genetic Variation and Projected Genetic Offsets for Cryptomeria japonica D. Don Under Future Climate Scenarios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1