Impacts of an environmental ototoxic pollutant on fish fighting behaviors.

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2024-12-07 DOI:10.1016/j.cbpc.2024.110103
Jiun-Lin Horng, Yu-Huan Hu, Hsi Chen, Ming-Yi Chou
{"title":"Impacts of an environmental ototoxic pollutant on fish fighting behaviors.","authors":"Jiun-Lin Horng, Yu-Huan Hu, Hsi Chen, Ming-Yi Chou","doi":"10.1016/j.cbpc.2024.110103","DOIUrl":null,"url":null,"abstract":"<p><p>Numerous environmental pollutants exhibit ototoxicity and cause damage to the lateral line structures in fish, including the neuromast and its hair cells. The lateral line is used to detect hydrodynamic changes and is thought to play a significant role in aggressive interactions. Fighting behaviors in fish are crucial for establishing social hierarchy and obtaining limited resources. In this study, we ablated the function of hair cells using a commonly used ototoxin, neomycin, to evaluate the impact of this ototoxic pollutant on fighting behavior through damaging the lateral line. Our results showed that the number of wins and the duration of dyadic fight behavior decreased in zebrafish with lateral line ablation. These zebrafish also exhibited increased anxiety and biting frequencies. On the other hand, social preferences and fitness were not affected in lateral line-ablated zebrafish. In conclusion, the lateral line mechanosensory system is crucial for fish to gather sufficient information and make correct decisions during conflicts and fighting behaviors. Impairment of hair cell function can affect aggressive behaviors and decision-making in fish, subtly altering their behavioral patterns and leading to significant impacts on the aquatic ecosystem.</p>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":" ","pages":"110103"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.cbpc.2024.110103","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerous environmental pollutants exhibit ototoxicity and cause damage to the lateral line structures in fish, including the neuromast and its hair cells. The lateral line is used to detect hydrodynamic changes and is thought to play a significant role in aggressive interactions. Fighting behaviors in fish are crucial for establishing social hierarchy and obtaining limited resources. In this study, we ablated the function of hair cells using a commonly used ototoxin, neomycin, to evaluate the impact of this ototoxic pollutant on fighting behavior through damaging the lateral line. Our results showed that the number of wins and the duration of dyadic fight behavior decreased in zebrafish with lateral line ablation. These zebrafish also exhibited increased anxiety and biting frequencies. On the other hand, social preferences and fitness were not affected in lateral line-ablated zebrafish. In conclusion, the lateral line mechanosensory system is crucial for fish to gather sufficient information and make correct decisions during conflicts and fighting behaviors. Impairment of hair cell function can affect aggressive behaviors and decision-making in fish, subtly altering their behavioral patterns and leading to significant impacts on the aquatic ecosystem.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
环境耳毒性污染物对鱼类战斗行为的影响。
许多环境污染物表现出耳毒性,并对鱼类的侧线结构造成损害,包括神经肥大及其毛细胞。侧线用于检测流体动力学变化,被认为在侵略性相互作用中起重要作用。鱼类的战斗行为对于建立社会等级和获取有限的资源至关重要。在这项研究中,我们使用一种常用的耳毒素新霉素消融毛细胞的功能,以评估这种耳毒性污染物通过破坏侧线对战斗行为的影响。我们的研究结果表明,斑马鱼在侧线消融后,获胜的次数和双矢战斗行为的持续时间减少。这些斑马鱼还表现出焦虑和咬人频率的增加。另一方面,斑马鱼的社会偏好和适应性不受侧线消融的影响。综上所述,侧线机械感觉系统对鱼类在冲突和战斗行为中收集足够的信息并做出正确的决策至关重要。毛细胞功能的损伤会影响鱼类的攻击行为和决策,微妙地改变它们的行为模式,对水生生态系统产生重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
A genus-wide study on venom proteome variation and phospholipase A2 inhibition in Asian lance-headed pit vipers (genus: Trimeresurus). The characteristics of aminotransferases gene family in Ruditapes philippinarum and its response to salinity stresses. Effects of in vitro cytochalasin D and hypoxia on mitochondrial energetics and biogenesis, cell signal status and actin/tubulin/Hsp/MMP entity in air-breathing fish heart. Reproductive toxicity and transgenerational effects of co-exposure to polystyrene microplastics and arsenic in zebrafish. A sexual dimorphism in zebrafish aggression and metabolism under acute ammonia stress.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1