Enteroviral 3C protease cleaves N4BP1 to impair the host inflammatory response.

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2025-01-31 Epub Date: 2024-12-10 DOI:10.1128/jvi.01758-24
Dongjie Zhang, Yifan Xie, Jie Cao, Lisu Huang, Wenchun Fan
{"title":"Enteroviral 3C protease cleaves N4BP1 to impair the host inflammatory response.","authors":"Dongjie Zhang, Yifan Xie, Jie Cao, Lisu Huang, Wenchun Fan","doi":"10.1128/jvi.01758-24","DOIUrl":null,"url":null,"abstract":"<p><p>Enteroviral 3C protease (3Cpro) is an essential enzyme for viral replication and is responsible for combating the host anti-viral immune response by targeting cellular proteins for cleavage. The identification and characterization of 3Cpro substrates will contribute to our understanding of viral pathogenesis. In this study, we performed a motif search for 3Cpro substrates in the human protein database using FIMO, which refers to a common cleavage sequence of 3Cpro. We identified and characterized NEDD4-binding protein 1 (N4BP1), a key negative regulator of the NF-κB pathway, as a novel 3Cpro substrate. N4BP1 is cleaved at residue Q816 by 3Cpro from several human enteroviruses, resulting in the loss of its ability to regulate tumor necrosis factor alpha-activated NF-κB signaling. In addition, we found that mouse N4BP1, which has a threonine at the P1' site, is resistant to human enteroviral 3Cpro cleavage. However, rodent enteroviral 3Cpro derived from encephalomyocarditis virus (EMCV) can cleave both human and mouse N4BP1 at a species-specific site. By combining bioinformatic, biochemical, and cell biological approaches, we identified and characterized N4BP1 as a novel substrate of enteroviral 3Cpro. These findings provide valuable insights into the interplay between 3Cpro, its substrates, and viral pathogenesis.</p><p><strong>Importance: </strong>Targeting cellular proteins for cleavage by enteroviral 3Cpro is a conserved strategy used by enteroviruses to promote viral replication. While the cleavage of certain host proteins by 3Cpro may not affect viral replication, it is strongly associated with the pathogenesis of viral infection. In this study, we identified and characterized N4BP1, which plays such a role, using a combination of bioinformatic, biochemical, and cell biological approaches. Our data show that multiple 3Cpros cleave N4BP1 at residue Q816 and that cleavage of endogenous N4BP1 can occur during viral infection. N4BP1 has no effect on coxsackievirus B3 replication, but 3Cpro-induced N4BP1 cleavage abolishes its regulatory function in NF-κB signaling. We also show that mouse N4bp1 resists human enteroviral 3Cpro cleavage. In contrast, rodent enteroviral EMCV 3Cpro can target human and mouse N4BP1 for cleavage at different residues, which indicates that future investigations are needed to elucidate the potential mechanisms involved.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0175824"},"PeriodicalIF":4.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784292/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.01758-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enteroviral 3C protease (3Cpro) is an essential enzyme for viral replication and is responsible for combating the host anti-viral immune response by targeting cellular proteins for cleavage. The identification and characterization of 3Cpro substrates will contribute to our understanding of viral pathogenesis. In this study, we performed a motif search for 3Cpro substrates in the human protein database using FIMO, which refers to a common cleavage sequence of 3Cpro. We identified and characterized NEDD4-binding protein 1 (N4BP1), a key negative regulator of the NF-κB pathway, as a novel 3Cpro substrate. N4BP1 is cleaved at residue Q816 by 3Cpro from several human enteroviruses, resulting in the loss of its ability to regulate tumor necrosis factor alpha-activated NF-κB signaling. In addition, we found that mouse N4BP1, which has a threonine at the P1' site, is resistant to human enteroviral 3Cpro cleavage. However, rodent enteroviral 3Cpro derived from encephalomyocarditis virus (EMCV) can cleave both human and mouse N4BP1 at a species-specific site. By combining bioinformatic, biochemical, and cell biological approaches, we identified and characterized N4BP1 as a novel substrate of enteroviral 3Cpro. These findings provide valuable insights into the interplay between 3Cpro, its substrates, and viral pathogenesis.

Importance: Targeting cellular proteins for cleavage by enteroviral 3Cpro is a conserved strategy used by enteroviruses to promote viral replication. While the cleavage of certain host proteins by 3Cpro may not affect viral replication, it is strongly associated with the pathogenesis of viral infection. In this study, we identified and characterized N4BP1, which plays such a role, using a combination of bioinformatic, biochemical, and cell biological approaches. Our data show that multiple 3Cpros cleave N4BP1 at residue Q816 and that cleavage of endogenous N4BP1 can occur during viral infection. N4BP1 has no effect on coxsackievirus B3 replication, but 3Cpro-induced N4BP1 cleavage abolishes its regulatory function in NF-κB signaling. We also show that mouse N4bp1 resists human enteroviral 3Cpro cleavage. In contrast, rodent enteroviral EMCV 3Cpro can target human and mouse N4BP1 for cleavage at different residues, which indicates that future investigations are needed to elucidate the potential mechanisms involved.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
肠病毒3C蛋白酶裂解N4BP1,损害宿主炎症反应。
肠病毒3C蛋白酶(Enteroviral 3C protease, 3Cpro)是病毒复制的一种必需酶,它通过靶向细胞蛋白进行切割来对抗宿主的抗病毒免疫反应。3Cpro底物的鉴定和表征将有助于我们了解病毒的发病机制。在本研究中,我们使用FIMO在人蛋白数据库中搜索3Cpro底物,FIMO指的是3Cpro的一个常见裂解序列。我们鉴定并鉴定了nedd4结合蛋白1 (N4BP1)是一种新的3Cpro底物,它是NF-κB通路的关键负调节因子。N4BP1在残基Q816处被来自几种人肠病毒的3Cpro切割,导致其失去调节肿瘤坏死因子α激活的NF-κB信号的能力。此外,我们发现小鼠N4BP1在P1'位点有一个苏氨酸,对人类肠病毒3Cpro切割具有抗性。然而,来自脑心肌炎病毒(EMCV)的啮齿动物肠道病毒3Cpro可以在物种特异性位点切割人和小鼠的N4BP1。通过结合生物信息学、生物化学和细胞生物学方法,我们鉴定并表征了N4BP1是肠病毒3Cpro的一种新型底物。这些发现为3Cpro、其底物和病毒发病机制之间的相互作用提供了有价值的见解。重要性:肠病毒3Cpro靶向细胞蛋白裂解是肠病毒用于促进病毒复制的一种保守策略。虽然3Cpro对某些宿主蛋白的切割可能不会影响病毒的复制,但它与病毒感染的发病机制密切相关。在这项研究中,我们利用生物信息学、生物化学和细胞生物学的方法,鉴定并表征了N4BP1,它起着这样的作用。我们的数据显示,多个3cpro在残基Q816处切割N4BP1,内源性N4BP1的切割可以在病毒感染期间发生。N4BP1对柯萨奇病毒B3复制无影响,但3cpro诱导的N4BP1的裂解使其对NF-κB信号的调控功能失效。我们还发现小鼠N4bp1能够抵抗人类肠病毒3Cpro的切割。相比之下,啮齿动物肠道病毒EMCV 3Cpro可以针对人和小鼠N4BP1的不同残基进行切割,这表明需要进一步的研究来阐明潜在的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Zika virus inhibits cell death by inhibiting the expression of NLRP3 and A20. Perturbation of de novo lipogenesis hinders MERS-CoV assembly and release, but not the biogenesis of viral replication organelles. Characterization and therapeutic potential of newly isolated bacteriophages against Staphylococcus species in bovine mastitis. Deglycosylation and truncation in the neuraminidase stalk are functionally equivalent in enhancing the pathogenicity of a high pathogenicity avian influenza virus in chickens. STT3B promotes porcine epidemic diarrhea virus replication by regulating N-glycosylation of PEDV S protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1