{"title":"Fragmentation Considerations Using Amidoamine Oxide Homologs.","authors":"Atsushi Yamamoto, Naoji Tokai, Rie Kakehashi, Daisuke Saigusa","doi":"10.5702/massspectrometry.A0158","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the mass spectrometric analysis of 10 novel amidoamine oxide compounds, which are innovative hydrogelators for polar solvents. This research aims to identify characteristic fragment patterns for these amide compounds using high-resolution mass spectrometry. Methanol solutions of the compounds were analyzed in positive and negative ion modes, and MS1 and MS2 spectra at 6 collision energy levels were obtained via electrospray ionization and hybrid tandem mass spectrometry. The importance of low-intensity peaks in structure elucidation was emphasized because low-intensity fragments could provide crucial structural information, especially for compounds with similar structures. Chain-length-dependent fragmentation patterns were observed, which could aid in predicting the structures of related compounds. This research highlights the challenges of balancing informative low-intensity peaks with accurate spectral matching in databases. Based on our results, combining mass spectrometry with separation techniques, such as liquid chromatography, could enhance structural elucidation for unknown compounds. This study contributes to the broader field of mass spectrometry and structural chemistry, particularly in the analysis of amide compounds, and future directions are proposed for developing robust algorithms for selecting and interpreting low-intensity peaks to improve compound identification in complex mixtures.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"13 1","pages":"A0158"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11626507/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the mass spectrometric analysis of 10 novel amidoamine oxide compounds, which are innovative hydrogelators for polar solvents. This research aims to identify characteristic fragment patterns for these amide compounds using high-resolution mass spectrometry. Methanol solutions of the compounds were analyzed in positive and negative ion modes, and MS1 and MS2 spectra at 6 collision energy levels were obtained via electrospray ionization and hybrid tandem mass spectrometry. The importance of low-intensity peaks in structure elucidation was emphasized because low-intensity fragments could provide crucial structural information, especially for compounds with similar structures. Chain-length-dependent fragmentation patterns were observed, which could aid in predicting the structures of related compounds. This research highlights the challenges of balancing informative low-intensity peaks with accurate spectral matching in databases. Based on our results, combining mass spectrometry with separation techniques, such as liquid chromatography, could enhance structural elucidation for unknown compounds. This study contributes to the broader field of mass spectrometry and structural chemistry, particularly in the analysis of amide compounds, and future directions are proposed for developing robust algorithms for selecting and interpreting low-intensity peaks to improve compound identification in complex mixtures.