Characterization of Ultraviolet-Degraded Polyethylene Terephthalate Film Using a Complementary Approach: Reactive Pyrolysis-Gas Chromatography-Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.

Q3 Physics and Astronomy Mass spectrometry Pub Date : 2025-01-01 Epub Date: 2025-01-15 DOI:10.5702/massspectrometry.A0168
Azusa Kubota, Takaya Satoh, Masaaki Ubukata, Ayumi Kubo, Chikako Nakayama
{"title":"Characterization of Ultraviolet-Degraded Polyethylene Terephthalate Film Using a Complementary Approach: Reactive Pyrolysis-Gas Chromatography-Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry.","authors":"Azusa Kubota, Takaya Satoh, Masaaki Ubukata, Ayumi Kubo, Chikako Nakayama","doi":"10.5702/massspectrometry.A0168","DOIUrl":null,"url":null,"abstract":"<p><p>Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes. This report investigates the structural alterations in PET films resulting from ultraviolet (UV) irradiation utilizing pyrolysis-gas chromatography time-of-flight mass spectrometry (Py-GC-TOFMS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOFMS). Using the reactive Py-GC-TOFMS, we estimated the composition of the pyrolysis products resulting from UV degradation through electron ionization, soft ionization, and exact mass measurements. Additionally, artificial intelligence (AI)-based structure analysis was performed to evaluate these compounds' structures. Notably, most degradation products were not found in the National Institute of Standards and Technology database, underscoring the effectiveness of our approach. Using MALDI-TOFMS analysis, we determine the changes in the end groups before and after UV irradiation. This analysis confirmed the generation of a series of carboxylic acid end groups as a result of degradation, a polymer series not detected by reactive pyrolysis GC-MS. We also explored degradation in the depth direction, demonstrating that degradation progresses gradually to depths of several micrometers. Our findings highlight the importance of employing mass spectrometry techniques for a comprehensive analysis of polymer degradation.</p>","PeriodicalId":18243,"journal":{"name":"Mass spectrometry","volume":"14 1","pages":"A0168"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744444/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass spectrometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5702/massspectrometry.A0168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Polyethylene terephthalate (PET) is widely used across various industries owing to its versatility and favorable properties, including application in beverage bottles, food containers, textile fibers, engineering resins, films, and sheets. However, polymer materials are susceptible to degradation from factors such as light, oxygen, and heat. Therefore, it is crucial to understand the structural changes that occur during degradation and the extent of these changes. This report investigates the structural alterations in PET films resulting from ultraviolet (UV) irradiation utilizing pyrolysis-gas chromatography time-of-flight mass spectrometry (Py-GC-TOFMS) and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOFMS). Using the reactive Py-GC-TOFMS, we estimated the composition of the pyrolysis products resulting from UV degradation through electron ionization, soft ionization, and exact mass measurements. Additionally, artificial intelligence (AI)-based structure analysis was performed to evaluate these compounds' structures. Notably, most degradation products were not found in the National Institute of Standards and Technology database, underscoring the effectiveness of our approach. Using MALDI-TOFMS analysis, we determine the changes in the end groups before and after UV irradiation. This analysis confirmed the generation of a series of carboxylic acid end groups as a result of degradation, a polymer series not detected by reactive pyrolysis GC-MS. We also explored degradation in the depth direction, demonstrating that degradation progresses gradually to depths of several micrometers. Our findings highlight the importance of employing mass spectrometry techniques for a comprehensive analysis of polymer degradation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
紫外降解聚对苯二甲酸乙二醇酯薄膜的互补表征:反应热解-气相色谱-质谱和基质辅助激光解吸/电离质谱。
聚对苯二甲酸乙二醇酯(PET)由于其多功能性和良好的性能而广泛应用于各个行业,包括饮料瓶,食品容器,纺织纤维,工程树脂,薄膜和片材。然而,聚合物材料容易受到光、氧和热等因素的降解。因此,了解降解过程中发生的结构变化以及这些变化的程度至关重要。本文利用热解-气相色谱-飞行时间质谱法(Py-GC-TOFMS)和基质辅助激光解吸/电离-飞行时间质谱法(MALDI-TOFMS)研究了紫外线(UV)照射下PET薄膜的结构变化。使用反应性Py-GC-TOFMS,我们通过电子电离、软电离和精确的质量测量来估计紫外降解产生的热解产物的组成。此外,还进行了基于人工智能(AI)的结构分析来评估这些化合物的结构。值得注意的是,在国家标准与技术研究所的数据库中没有发现大多数降解产物,这强调了我们方法的有效性。利用MALDI-TOFMS分析,我们确定了紫外照射前后端基的变化。该分析证实了由于降解而产生的一系列羧酸端基,这是反应热解GC-MS未检测到的聚合物系列。我们还研究了深度方向上的降解,表明降解逐渐进行到几微米的深度。我们的发现强调了采用质谱技术对聚合物降解进行全面分析的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mass spectrometry
Mass spectrometry Physics and Astronomy-Instrumentation
CiteScore
1.90
自引率
0.00%
发文量
3
期刊最新文献
Characterization of Ultraviolet-Degraded Polyethylene Terephthalate Film Using a Complementary Approach: Reactive Pyrolysis-Gas Chromatography-Mass Spectrometry and Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Mass Spectrometry as a First-Line Diagnostic Aid for Congenital Disorders of Glycosylation. A Method for High Throughput Free Fatty Acids Determination in a Small Section of Bovine Liver Tissue Using Supercritical Fluid Extraction Combined with Supercritical Fluid Chromatography-Medium Vacuum Chemical Ionization Mass Spectrometry. Comparison of Amine-Modified Polymeric Stationary Phases for Polar Metabolomic Analysis Based on Unified-Hydrophilic Interaction/Anion Exchange Liquid Chromatography/High-Resolution Mass Spectrometry (Unified-HILIC/AEX/HRMS). Mobilize a Proton to Transform the Collision-Induced Dissociation Spectral Pattern of a Cyclic Peptide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1