Plasma-Induced Construction of S-Scheme Heterojunctions Enables Photo-Enhanced Peroxymonosulfate Activation for Gaseous Toluene Removal

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-12-10 DOI:10.1002/aenm.202404621
Huanran Miao, Huiqin Yao, Yong Li, Xinwei Zhang, Huai Wang, Xiai Zhang, Ge Wang, Qikui Fan, Zhimao Yang, Cheng Zhou, Ben Liu, Chuncai Kong
{"title":"Plasma-Induced Construction of S-Scheme Heterojunctions Enables Photo-Enhanced Peroxymonosulfate Activation for Gaseous Toluene Removal","authors":"Huanran Miao,&nbsp;Huiqin Yao,&nbsp;Yong Li,&nbsp;Xinwei Zhang,&nbsp;Huai Wang,&nbsp;Xiai Zhang,&nbsp;Ge Wang,&nbsp;Qikui Fan,&nbsp;Zhimao Yang,&nbsp;Cheng Zhou,&nbsp;Ben Liu,&nbsp;Chuncai Kong","doi":"10.1002/aenm.202404621","DOIUrl":null,"url":null,"abstract":"<p>Selective activation of peroxymonosulfate (PMS) represents an efficient route to generate the reactive oxygen species (ROS) for the degradation and deep mineralization of organic pollutants, but its activity and selectivity are remarkably lower than what is needed. Herein, an S-scheme heterojunction is developed to effectively modify surface electronic properties and introduce abundant oxygen vacancies, thereby enabling photo-enhanced PMS activation for selective removal of gaseous toluene. S-scheme heterojunction is fabricated by in situ growth of ultrathin Co<sub>3</sub>O<sub>4</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> nanosheets through a rapid plasma treatment. The electronic field at the S-scheme heterostructure interface of Co<sub>3</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> (COCN) facilitates charge transfer, selectively removing low-redox electrons and holes while separating high-redox ones. Photo-excited electrons promote the Co<sup>3+</sup>/Co<sup>2+</sup> redox cycle, thereby enhancing ROS generation and creating continuous PMS activation sites. The COCN catalyst demonstrates remarkably high degradation efficiency (90.2%) and mineralization rate (68.5%) for flowing gaseous toluene in aqueous solution. This study thus provides a feasible strategy for plasma-induced electronic modulation and offers new insights for future heterojunction design aimed at efficient PMS activation.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 15","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202404621","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selective activation of peroxymonosulfate (PMS) represents an efficient route to generate the reactive oxygen species (ROS) for the degradation and deep mineralization of organic pollutants, but its activity and selectivity are remarkably lower than what is needed. Herein, an S-scheme heterojunction is developed to effectively modify surface electronic properties and introduce abundant oxygen vacancies, thereby enabling photo-enhanced PMS activation for selective removal of gaseous toluene. S-scheme heterojunction is fabricated by in situ growth of ultrathin Co3O4 nanoparticles on g-C3N4 nanosheets through a rapid plasma treatment. The electronic field at the S-scheme heterostructure interface of Co3O4/g-C3N4 (COCN) facilitates charge transfer, selectively removing low-redox electrons and holes while separating high-redox ones. Photo-excited electrons promote the Co3+/Co2+ redox cycle, thereby enhancing ROS generation and creating continuous PMS activation sites. The COCN catalyst demonstrates remarkably high degradation efficiency (90.2%) and mineralization rate (68.5%) for flowing gaseous toluene in aqueous solution. This study thus provides a feasible strategy for plasma-induced electronic modulation and offers new insights for future heterojunction design aimed at efficient PMS activation.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体诱导的s方案异质结的构建使光增强过氧单硫酸盐活化去除气态甲苯
过一硫酸盐(PMS)的选择性活化是产生活性氧(ROS)以降解和深度矿化有机污染物的有效途径,但其活性和选择性明显低于所需的水平。在此,我们开发了一种 S 型异质结,可有效改变表面电子特性并引入丰富的氧空位,从而实现光增强 PMS 活化,选择性地去除气态甲苯。S 型异质结是通过快速等离子体处理在 g-C3N4 纳米片上原位生长超薄 Co3O4 纳米颗粒而制成的。Co3O4/g-C3N4 (COCN) S 型异质结构界面上的电子场促进了电荷转移,选择性地移除低氧化还原电子和空穴,同时分离高氧化还原电子和空穴。光激发电子促进了 Co3+/Co2+ 的氧化还原循环,从而增强了 ROS 的生成并创造了连续的 PMS 活化位点。COCN 催化剂对水溶液中流动的气态甲苯具有极高的降解效率(90.2%)和矿化率(68.5%)。因此,这项研究为等离子体诱导电子调制提供了一种可行的策略,并为未来旨在高效活化 PMS 的异质结设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Suppresses Vanadium Dissolution via Superlattice Strategy for Practical Zinc‐Vanadium Batteries with Ultralong Lifespan at Low Current Density Bimolecular Hetero‐Spatial Co‐Passivation Enables Efficient MA‐Free Wide‐Bandgap Perovskites for All‐Perovskite Tandem Solar Cells Facet‐Engineered Na 2 FeSiO 4 Cathodes Realizing Zero‐Strain Operation and Ultra‐Stable Sodium Storage High‐Performance Electrochromic Smart Window for Energy‐Saving Applications Based on WO 3 and Polycarbazole Three‐Dimensional Ag 2 Se Thermoelectric Network Advances Multimodal Intelligent Perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1