Plasma-Induced Construction of S-Scheme Heterojunctions Enables Photo-Enhanced Peroxymonosulfate Activation for Gaseous Toluene Removal

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-12-10 DOI:10.1002/aenm.202404621
Huanran Miao, Huiqin Yao, Yong Li, Xinwei Zhang, Huai Wang, Xiai Zhang, Ge Wang, Qikui Fan, Zhimao Yang, Cheng Zhou, Ben Liu, Chuncai Kong
{"title":"Plasma-Induced Construction of S-Scheme Heterojunctions Enables Photo-Enhanced Peroxymonosulfate Activation for Gaseous Toluene Removal","authors":"Huanran Miao, Huiqin Yao, Yong Li, Xinwei Zhang, Huai Wang, Xiai Zhang, Ge Wang, Qikui Fan, Zhimao Yang, Cheng Zhou, Ben Liu, Chuncai Kong","doi":"10.1002/aenm.202404621","DOIUrl":null,"url":null,"abstract":"Selective activation of peroxymonosulfate (PMS) represents an efficient route to generate the reactive oxygen species (ROS) for the degradation and deep mineralization of organic pollutants, but its activity and selectivity are remarkably lower than what is needed. Herein, an S-scheme heterojunction is developed to effectively modify surface electronic properties and introduce abundant oxygen vacancies, thereby enabling photo-enhanced PMS activation for selective removal of gaseous toluene. S-scheme heterojunction is fabricated by in situ growth of ultrathin Co<sub>3</sub>O<sub>4</sub> nanoparticles on g-C<sub>3</sub>N<sub>4</sub> nanosheets through a rapid plasma treatment. The electronic field at the S-scheme heterostructure interface of Co<sub>3</sub>O<sub>4</sub>/g-C<sub>3</sub>N<sub>4</sub> (COCN) facilitates charge transfer, selectively removing low-redox electrons and holes while separating high-redox ones. Photo-excited electrons promote the Co<sup>3+</sup>/Co<sup>2+</sup> redox cycle, thereby enhancing ROS generation and creating continuous PMS activation sites. The COCN catalyst demonstrates remarkably high degradation efficiency (90.2%) and mineralization rate (68.5%) for flowing gaseous toluene in aqueous solution. This study thus provides a feasible strategy for plasma-induced electronic modulation and offers new insights for future heterojunction design aimed at efficient PMS activation.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"113 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404621","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Selective activation of peroxymonosulfate (PMS) represents an efficient route to generate the reactive oxygen species (ROS) for the degradation and deep mineralization of organic pollutants, but its activity and selectivity are remarkably lower than what is needed. Herein, an S-scheme heterojunction is developed to effectively modify surface electronic properties and introduce abundant oxygen vacancies, thereby enabling photo-enhanced PMS activation for selective removal of gaseous toluene. S-scheme heterojunction is fabricated by in situ growth of ultrathin Co3O4 nanoparticles on g-C3N4 nanosheets through a rapid plasma treatment. The electronic field at the S-scheme heterostructure interface of Co3O4/g-C3N4 (COCN) facilitates charge transfer, selectively removing low-redox electrons and holes while separating high-redox ones. Photo-excited electrons promote the Co3+/Co2+ redox cycle, thereby enhancing ROS generation and creating continuous PMS activation sites. The COCN catalyst demonstrates remarkably high degradation efficiency (90.2%) and mineralization rate (68.5%) for flowing gaseous toluene in aqueous solution. This study thus provides a feasible strategy for plasma-induced electronic modulation and offers new insights for future heterojunction design aimed at efficient PMS activation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Realization of Ideal Ba Promoter State by Simultaneous Incorporation with Co into Carbon-protective Framework for Ammonia Synthesis Catalyst Mechanical Degradation by Anion Redox in LiNiO2 Countered via Pillaring Fabric-Based Stretchable and Breathable Backscattered Monitoring System Low Potential Electrochemical CO2 Reduction to Methanol over Nickel-Based Hollow 0D Carbon Superstructure Plasma-Induced Construction of S-Scheme Heterojunctions Enables Photo-Enhanced Peroxymonosulfate Activation for Gaseous Toluene Removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1