Yuanfang Li, Xiaoshu Lv, Yan Liu, Jie Yin, Ruimei Fang, Guangming Jiang and Zhehan Yang
{"title":"Efficient, simultaneous, quantitative and qualitative detection of multiple phenols using highly water-stable Co2+-doped Cu–BTC as an electrocatalyst†","authors":"Yuanfang Li, Xiaoshu Lv, Yan Liu, Jie Yin, Ruimei Fang, Guangming Jiang and Zhehan Yang","doi":"10.1039/D4EN00912F","DOIUrl":null,"url":null,"abstract":"<p >A rational design of water-stable and high-efficiency MOF-based electrocatalysts for achieving durable sensitive electrochemical sensors for pollution detection remains a great challenge. Herein, water-stable Co<small><sup>2+</sup></small>-doped Cu<small><sup>2+</sup></small> and 1,3,5-benzene tricarboxylic coordination polymers (Cu–BTC@Co) were designed to construct a sensitive and durable electrochemical sensor for simultaneously detecting multiple hazardous phenols. Combining the Mulliken charges of H<small><sub>2</sub></small>O and BTC, the mechanism for the water stability of Cu–BTC@Co was discussed. Intermolecular force (Cu–BTC and Cu–H<small><sub>2</sub></small>O) and intramolecular force (π–π bond and COO–H<small><sub>2</sub></small>O hydrogen bond) made Cu<small><sup>2+</sup></small> coordination to BTC much stronger than water; thus, Cu–BTC@Co with strong stability in a water environment was achieved. Moreover, doping Co<small><sup>2+</sup></small> into Cu–BTC not only improves the electron transfer efficiency of Cu–BTC but also enhances the catalytical efficiency of Cu–BTC. Combining the high-efficiency selective catalysis of Cu–BTC@Co and oxidation potential difference among multiple phenols, the Cu–BTC@Co sensor can achieve simultaneous, quantitative and qualitative detection of multiple phenols with good multicycle sensing performance. This study clarifies the mechanism of synthesizing water-stable MOFs and promotes the application of MOF-based sensors in the quantitative analysis of water pollutants.</p>","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":" 2","pages":" 1570-1580"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/en/d4en00912f","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A rational design of water-stable and high-efficiency MOF-based electrocatalysts for achieving durable sensitive electrochemical sensors for pollution detection remains a great challenge. Herein, water-stable Co2+-doped Cu2+ and 1,3,5-benzene tricarboxylic coordination polymers (Cu–BTC@Co) were designed to construct a sensitive and durable electrochemical sensor for simultaneously detecting multiple hazardous phenols. Combining the Mulliken charges of H2O and BTC, the mechanism for the water stability of Cu–BTC@Co was discussed. Intermolecular force (Cu–BTC and Cu–H2O) and intramolecular force (π–π bond and COO–H2O hydrogen bond) made Cu2+ coordination to BTC much stronger than water; thus, Cu–BTC@Co with strong stability in a water environment was achieved. Moreover, doping Co2+ into Cu–BTC not only improves the electron transfer efficiency of Cu–BTC but also enhances the catalytical efficiency of Cu–BTC. Combining the high-efficiency selective catalysis of Cu–BTC@Co and oxidation potential difference among multiple phenols, the Cu–BTC@Co sensor can achieve simultaneous, quantitative and qualitative detection of multiple phenols with good multicycle sensing performance. This study clarifies the mechanism of synthesizing water-stable MOFs and promotes the application of MOF-based sensors in the quantitative analysis of water pollutants.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis