Katie O'Neill, Jagannath Biswakarma, Richard Crane, James M. Byrne
{"title":"Recovery of Co(II), Ni(II) and Zn(II) using magnetic nanoparticles (MNPs) at circumneutral pH","authors":"Katie O'Neill, Jagannath Biswakarma, Richard Crane, James M. Byrne","doi":"10.1039/d4en01176g","DOIUrl":null,"url":null,"abstract":"Growing demand for metals, particularly those with irreplaceable utility within renewable energy technology dictates an urgent demand for the development of new innovative approaches for their extraction from primary and secondary sources. In this study, magnetic nanoparticles (MNP) were investigated for their ability to remove cobalt (Co2+), nickel (Ni2+), and zinc (Zn2+) ions from neutral pH aqueous solutions under anoxic conditions. A MNP suspension (1 g L-1 or 5 g L-1) was exposed to varying concentrations of Co(II), Ni(II), and Zn(II) (50 – 1000 mg L-1) in both single and mixed systems for 48 hours at pH 7.0 ± 0.1. Results show that MNPs can remove these ions to low concentrations (Kd values: Zn: 0.07 L g-1; Co: 0.02 L g-1; and Ni: 0.01 L g-1 in single metal systems). Transmission Electron Microscopy (TEM) analysis confirmed relatively homogenous surface coverage of MNPs by each metal, while X-ray Absorption Spectroscopy (XAS) measurements determined sorption via the formation of coordinate bonds between the sorbed metals and surface oxygen atoms (Fe-O). Overall, our results show that MNPs can serve as an effective and reusable sorbent for Zn, Ni and Co ions from circumneutral pH waters.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"7 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en01176g","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Growing demand for metals, particularly those with irreplaceable utility within renewable energy technology dictates an urgent demand for the development of new innovative approaches for their extraction from primary and secondary sources. In this study, magnetic nanoparticles (MNP) were investigated for their ability to remove cobalt (Co2+), nickel (Ni2+), and zinc (Zn2+) ions from neutral pH aqueous solutions under anoxic conditions. A MNP suspension (1 g L-1 or 5 g L-1) was exposed to varying concentrations of Co(II), Ni(II), and Zn(II) (50 – 1000 mg L-1) in both single and mixed systems for 48 hours at pH 7.0 ± 0.1. Results show that MNPs can remove these ions to low concentrations (Kd values: Zn: 0.07 L g-1; Co: 0.02 L g-1; and Ni: 0.01 L g-1 in single metal systems). Transmission Electron Microscopy (TEM) analysis confirmed relatively homogenous surface coverage of MNPs by each metal, while X-ray Absorption Spectroscopy (XAS) measurements determined sorption via the formation of coordinate bonds between the sorbed metals and surface oxygen atoms (Fe-O). Overall, our results show that MNPs can serve as an effective and reusable sorbent for Zn, Ni and Co ions from circumneutral pH waters.
期刊介绍:
Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas:
Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability
Nanomaterial interactions with biological systems and nanotoxicology
Environmental fate, reactivity, and transformations of nanoscale materials
Nanoscale processes in the environment
Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis