Joshua A Davis, Sai Prasanna Chinthala, Chelsea N Monty-Bromer, John M Senko
{"title":"Electrochemical Detection of Carbon Steel Corrosion Induced by Fermentative Bacteria From Natural Gas Transmission Lines.","authors":"Joshua A Davis, Sai Prasanna Chinthala, Chelsea N Monty-Bromer, John M Senko","doi":"10.1111/1758-2229.70058","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic potential and corrosive activities of a fermentative bacterial enrichment culture from a natural gas transmission line were characterised. Three metagenome-assembled genomes (MAGs) attributable to Cytobacillus, Lacrimispora and Staphylococcus spp. were obtained. These MAGs hosted genes involved in the fermentation of carbohydrates to organic acids, which was reflected in the acidification of the growth medium by the culture. To evaluate the corrosive activities of the culture, it was incubated in a split chamber-zero resistance ammetry (SC-ZRA) format. This involved deploying carbon steel coupons immersed in liquid medium in opposing chambers of an electrochemical cell. Measurement of current between the coupons indicated the extent and mechanism of corrosion. When the enrichment culture was added to one side of an SC-ZRA incubation with bicarbonate-buffered medium, pH change and corrosion were minimal. In bicarbonate-free medium, the culture acidified the medium, induced electron transfer from the uninoculated chamber to the inoculated chamber, and caused mass loss. These results indicate that fermenter-induced microbially influenced corrosion (MIC) is due to localised fluid acidification, inducing anodic reactions on the metal surface exposed to the microorganisms and mass loss of the non-exposed metal.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":"e70058"},"PeriodicalIF":3.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630862/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/1758-2229.70058","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The metabolic potential and corrosive activities of a fermentative bacterial enrichment culture from a natural gas transmission line were characterised. Three metagenome-assembled genomes (MAGs) attributable to Cytobacillus, Lacrimispora and Staphylococcus spp. were obtained. These MAGs hosted genes involved in the fermentation of carbohydrates to organic acids, which was reflected in the acidification of the growth medium by the culture. To evaluate the corrosive activities of the culture, it was incubated in a split chamber-zero resistance ammetry (SC-ZRA) format. This involved deploying carbon steel coupons immersed in liquid medium in opposing chambers of an electrochemical cell. Measurement of current between the coupons indicated the extent and mechanism of corrosion. When the enrichment culture was added to one side of an SC-ZRA incubation with bicarbonate-buffered medium, pH change and corrosion were minimal. In bicarbonate-free medium, the culture acidified the medium, induced electron transfer from the uninoculated chamber to the inoculated chamber, and caused mass loss. These results indicate that fermenter-induced microbially influenced corrosion (MIC) is due to localised fluid acidification, inducing anodic reactions on the metal surface exposed to the microorganisms and mass loss of the non-exposed metal.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.