Nitrogen availability in soil controls uptake of different nitrogen forms by plants

IF 8.3 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2024-12-11 DOI:10.1111/nph.20335
Min Liu, Xingliang Xu, Wolfgang Wanek, Jian Sun, Richard D. Bardgett, Yuqiang Tian, Xiaoyong Cui, Lili Jiang, Zeqing Ma, Yakov Kuzyakov, Hua Ouyang, Yanfen Wang
{"title":"Nitrogen availability in soil controls uptake of different nitrogen forms by plants","authors":"Min Liu, Xingliang Xu, Wolfgang Wanek, Jian Sun, Richard D. Bardgett, Yuqiang Tian, Xiaoyong Cui, Lili Jiang, Zeqing Ma, Yakov Kuzyakov, Hua Ouyang, Yanfen Wang","doi":"10.1111/nph.20335","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Nitrogen (N) uptake by plant roots from soil is the largest flux within the terrestrial N cycle. Despite its significance, a comprehensive analysis of plant uptake for inorganic and organic N forms across grasslands is lacking.</li>\n<li>Here we measured <i>in situ</i> plant uptake of 13 inorganic and organic N forms by dominant species along a 3000 km transect spanning temperate and alpine grasslands. To generalize our experimental findings, we synthesized data on N uptake from 60 studies encompassing 148 plant species world-wide.</li>\n<li>Our analysis revealed that alpine grasslands had faster NH<sub>4</sub><sup>+</sup> uptake than temperate grasslands. Most plants preferred NO<sub>3</sub><sup>−</sup> (65%) over NH<sub>4</sub><sup>+</sup> (24%), followed by amino acids (11%). The uptake preferences and uptake rates were modulated by soil N availability that was defined by climate, soil properties, and intrinsic characteristics of the N form.</li>\n<li>These findings pave the way toward more fully understanding of N cycling in terrestrial ecosystems, provide novel insights into the N form-specific mechanisms of plant N uptake, and highlight ecological consequences of chemical niche differentiation to reduce competition between coexisting plant species.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"239 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20335","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

  • Nitrogen (N) uptake by plant roots from soil is the largest flux within the terrestrial N cycle. Despite its significance, a comprehensive analysis of plant uptake for inorganic and organic N forms across grasslands is lacking.
  • Here we measured in situ plant uptake of 13 inorganic and organic N forms by dominant species along a 3000 km transect spanning temperate and alpine grasslands. To generalize our experimental findings, we synthesized data on N uptake from 60 studies encompassing 148 plant species world-wide.
  • Our analysis revealed that alpine grasslands had faster NH4+ uptake than temperate grasslands. Most plants preferred NO3 (65%) over NH4+ (24%), followed by amino acids (11%). The uptake preferences and uptake rates were modulated by soil N availability that was defined by climate, soil properties, and intrinsic characteristics of the N form.
  • These findings pave the way toward more fully understanding of N cycling in terrestrial ecosystems, provide novel insights into the N form-specific mechanisms of plant N uptake, and highlight ecological consequences of chemical niche differentiation to reduce competition between coexisting plant species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Nitrogen availability in soil controls uptake of different nitrogen forms by plants Identification of fossil juniper seeds from Rancho La Brea (California, USA): drought and extirpation in the Late Pleistocene MdHY5 positively regulates cold tolerance in apple by integrating the auxin and abscisic acid pathways MtNAD1 associates with the autophagy complex to contribute to the degradation of immunity-related proteins in Medicago truncatula nodules Natural variation in root exudate composition in the genetically structured Arabidopsis thaliana in the Iberian Peninsula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1