Staged Noise Perturbation for Privacy-Preserving Federated Learning

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Sustainable Computing Pub Date : 2024-04-04 DOI:10.1109/TSUSC.2024.3381812
Zhe Li;Honglong Chen;Yudong Gao;Zhichen Ni;Huansheng Xue;Huajie Shao
{"title":"Staged Noise Perturbation for Privacy-Preserving Federated Learning","authors":"Zhe Li;Honglong Chen;Yudong Gao;Zhichen Ni;Huansheng Xue;Huajie Shao","doi":"10.1109/TSUSC.2024.3381812","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) is a distributed machine learning paradigm that addresses the challenges of privacy leakage and data silos by collaboratively training the global model through parameter exchange, rather than data, between the central server and local clients. However, recent researches highlight the vulnerability of FL to gradient leakage attacks where adversaries exploit shared parameters from clients to reconstruct sensitive training data. Differential privacy (DP) effectively mitigates this threat by adding noise to shared parameters, yet introduces a trade-off between privacy and accuracy in FL. To better balance the privacy and accuracy, in this paper we propose a staged noise perturbation strategy, called alternating noise permutation (ANP), from a novel perspective. ANP adds Gaussian-distributed random noise to model parameters during the critical learning period of FL, following DP principles. While in non-critical learning period, ANP alternately permutes the noise during odd and even communication rounds, achieving near mutual cancellation and mitigating the negative impact. Experimental results across three datasets and two neural networks under both independent identical distribution (IID) and NonIID scenarios demonstrate that ANP significantly improves classification accuracy and exhibits robustness against gradient leakage attack, ensuring the effectiveness of FL for secure and accurate collaborative model training.","PeriodicalId":13268,"journal":{"name":"IEEE Transactions on Sustainable Computing","volume":"9 6","pages":"936-947"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Sustainable Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10491305/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) is a distributed machine learning paradigm that addresses the challenges of privacy leakage and data silos by collaboratively training the global model through parameter exchange, rather than data, between the central server and local clients. However, recent researches highlight the vulnerability of FL to gradient leakage attacks where adversaries exploit shared parameters from clients to reconstruct sensitive training data. Differential privacy (DP) effectively mitigates this threat by adding noise to shared parameters, yet introduces a trade-off between privacy and accuracy in FL. To better balance the privacy and accuracy, in this paper we propose a staged noise perturbation strategy, called alternating noise permutation (ANP), from a novel perspective. ANP adds Gaussian-distributed random noise to model parameters during the critical learning period of FL, following DP principles. While in non-critical learning period, ANP alternately permutes the noise during odd and even communication rounds, achieving near mutual cancellation and mitigating the negative impact. Experimental results across three datasets and two neural networks under both independent identical distribution (IID) and NonIID scenarios demonstrate that ANP significantly improves classification accuracy and exhibits robustness against gradient leakage attack, ensuring the effectiveness of FL for secure and accurate collaborative model training.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Sustainable Computing
IEEE Transactions on Sustainable Computing Mathematics-Control and Optimization
CiteScore
7.70
自引率
2.60%
发文量
54
期刊最新文献
Guest Editorial of the Special Section on AI Powered Edge Computing for IoT Editorial Addressing Concept Drift in IoT Anomaly Detection: Drift Detection, Interpretation, and Adaptation Dynamic Event-Triggered State Estimation for Power Harmonics With Quantization Effects: A Zonotopic Set-Membership Approach Staged Noise Perturbation for Privacy-Preserving Federated Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1